Unknown

Dataset Information

0

High-Throughput Functional Analysis of CFTR and Other Apically Localized Proteins in iPSC-Derived Human Intestinal Organoids.


ABSTRACT: Induced Pluripotent Stem Cells (iPSCs) can be differentiated into epithelial organoids that recapitulate the relevant context for CFTR and enable testing of therapies targeting Cystic Fibrosis (CF)-causing mutant proteins. However, to date, CF-iPSC-derived organoids have only been used to study pharmacological modulation of mutant CFTR channel activity and not the activity of other disease-relevant membrane protein constituents. In the current work, we describe a high-throughput, fluorescence-based assay of CFTR channel activity in iPSC-derived intestinal organoids and describe how this method can be adapted to study other apical membrane proteins. Specifically, we show how this assay can be employed to study CFTR and ENaC channels and an electrogenic acid transporter in the same iPSC-derived intestinal tissue. This phenotypic platform promises to expand CF therapy discovery to include strategies that target multiple determinants of epithelial fluid transport.

SUBMITTER: Xia S 

PROVIDER: S-EPMC8699884 | biostudies-literature | 2021 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

High-Throughput Functional Analysis of CFTR and Other Apically Localized Proteins in iPSC-Derived Human Intestinal Organoids.

Xia Sunny S   Bozóky Zoltán Z   Di Paola Michelle M   Laselva Onofrio O   Ahmadi Saumel S   Jiang Jia Xin JX   Pitstick Amy L AL   Jiang Chong C   Rotin Daniela D   Mayhew Christopher N CN   Jones Nicola L NL   Bear Christine E CE  

Cells 20211204 12


Induced Pluripotent Stem Cells (iPSCs) can be differentiated into epithelial organoids that recapitulate the relevant context for CFTR and enable testing of therapies targeting Cystic Fibrosis (CF)-causing mutant proteins. However, to date, CF-iPSC-derived organoids have only been used to study pharmacological modulation of mutant CFTR channel activity and not the activity of other disease-relevant membrane protein constituents. In the current work, we describe a high-throughput, fluorescence-ba  ...[more]

Similar Datasets

| S-EPMC10784521 | biostudies-literature
| S-EPMC7195499 | biostudies-literature
2023-12-12 | GSE249624 | GEO
| S-EPMC10572896 | biostudies-literature
| S-EPMC10795825 | biostudies-literature
| S-EPMC9963523 | biostudies-literature
| S-EPMC10844524 | biostudies-literature
| S-EPMC10905936 | biostudies-literature
| S-EPMC5986969 | biostudies-literature
| S-EPMC7961877 | biostudies-literature