Project description:BackgroundWe sought to develop a novel non-contrast multiparametric MRI (mpMRI) protocol employing several complementary techniques in a single scan session for a comprehensive functional and structural evaluation of diabetic kidney disease (DKD).MethodsIn the cross-sectional part of this prospective observational study, 38 subjects ages 18‒79 years with type 2 diabetes and DKD [estimated glomerular filtration rate (eGFR) 15‒60 mL/min/1.73 m2] and 20 age- and gender-matched healthy volunteers (HVs) underwent mpMRI. Repeat mpMRI was performed on 23 DKD subjects and 10 HVs. By measured GFR (mGFR), 2 DKD subjects had GFR stage G2, 16 stage G3 and 20 stage G4/G5. A wide range of MRI biomarkers associated with kidney haemodynamics, oxygenation and macro/microstructure were evaluated. Their optimal sensitivity, specificity and repeatability to differentiate diabetic versus healthy kidneys and categorize various stages of disease as well as their correlation with mGFR/albuminuria was assessed.ResultsSeveral MRI biomarkers differentiated diabetic from healthy kidneys and distinct GFR stages (G3 versus G4/G5); mean arterial flow (MAF) was the strongest predictor (sensitivity 0.94 and 1.0, specificity 1.00 and 0.69; P = .04 and .004, respectively). Parameters significantly correlating with mGFR were specific measures of kidney haemodynamics, oxygenation, microstructure and macrostructure, with MAF being the strongest univariate predictor (r = 0.92; P < .0001).ConclusionsA comprehensive and repeatable non-contrast mpMRI protocol was developed that, as a single, non-invasive tool, allows functional and structural assessment of DKD, which has the potential to provide valuable insights into underlying pathophysiology, disease progression and analysis of efficacy/mode of action of therapeutic interventions in DKD.
Project description:Portable, low-field magnetic resonance imaging (LF-MRI) of the brain may facilitate point-of-care assessment of patients with Alzheimer's disease (AD) in settings where conventional MRI cannot. However, image quality is limited by a lower signal-to-noise ratio. Here, we optimize LF-MRI acquisition and develop a freely available machine learning pipeline to quantify brain morphometry and white matter hyperintensities (WMH). We validate the pipeline and apply it to outpatients presenting with mild cognitive impairment or dementia due to AD. We find hippocampal volumes from ≤ 3 mm isotropic LF-MRI scans have agreement with conventional MRI and are more accurate than anisotropic counterparts. We also show WMH volume has agreement between manual segmentation and the automated pipeline. The increased availability and reduced cost of LF-MRI, in combination with our machine learning pipeline, has the potential to increase access to neuroimaging for dementia.
Project description:Background & aimsWith the increasing prevalence of liver disease worldwide, there is an urgent clinical need for reliable methods to diagnose and stage liver pathology. Liver biopsy, the current gold standard, is invasive and limited by sampling and observer dependent variability. In this study, we aimed to assess the diagnostic accuracy of a novel magnetic resonance protocol for liver tissue characterisation.MethodsWe conducted a prospective study comparing our magnetic resonance technique against liver biopsy. The individual components of the scanning protocol were T1 mapping, proton spectroscopy and T2* mapping, which quantified liver fibrosis, steatosis and haemosiderosis, respectively. Unselected adult patients referred for liver biopsy as part of their routine care were recruited. Scans performed prior to liver biopsy were analysed by physicians blinded to the histology results. The associations between magnetic resonance and histology variables were assessed. Receiver-operating characteristic analyses were also carried out.ResultsPaired magnetic resonance and biopsy data were obtained in 79 patients. Magnetic resonance measures correlated strongly with histology (r(s)=0.68 p<0.0001 for fibrosis; r(s)=0.89 p<0.001 for steatosis; r(s)=-0.69 p<0.0001 for haemosiderosis). The area under the receiver operating characteristic curve was 0.94, 0.93, and 0.94 for the diagnosis of any degree of fibrosis, steatosis and haemosiderosis respectively.ConclusionThe novel scanning method described here provides high diagnostic accuracy for the assessment of liver fibrosis, steatosis and haemosiderosis and could potentially replace liver biopsy for many indications. This is the first demonstration of a non-invasive test to differentiate early stages of fibrosis from normal liver.
Project description:With the development of tissue engineering and regenerative medicine, it is much desired to establish bioimaging techniques to monitor the real-time regeneration efficacy in vivo in a non-invasive way. Herein, we tried magnetic resonance imaging (MRI) to evaluate knee cartilage regeneration after implanting a biomaterial scaffold seeded with chondrocytes, namely, matrix-induced autologous chondrocyte implantation (MACI). After summary of the T2 mapping and the T1-related delayed gadolinium-enhanced MRI imaging of cartilage (dGEMRIC) in vitro and in vivo in the literature, these two MRI techniques were tried clinically. In this study, 18 patients were followed up for 1 year. It was found that there was a significant difference between the regeneration site and the neighboring normal site (control), and the difference gradually diminished with regeneration time up to 1 year according to both the quantitative T1 and T2 MRI methods. We further established the correlation between the quantitative evaluation of MRI and the clinical Lysholm scores for the first time. Hence, the MRI technique was confirmed to be a feasible semi-quantitative yet non-invasive way to evaluate the in vivo regeneration of knee articular cartilage.
Project description:IntroductionSevere pulmonary hypertension (mean pulmonary artery pressure ≥35 mmHg) in chronic lung disease (PH-CLD) is associated with high mortality and morbidity. Data suggesting potential response to vasodilator therapy in patients with PH-CLD is emerging. The current diagnostic strategy utilises transthoracic Echocardiography (TTE), which can be technically challenging in some patients with advanced CLD. The aim of this study was to evaluate the diagnostic role of MRI models to diagnose severe PH in CLD.Methods167 patients with CLD referred for suspected PH who underwent baseline cardiac MRI, pulmonary function tests and right heart catheterisation were identified. In a derivation cohort (n = 67) a bi-logistic regression model was developed to identify severe PH and compared to a previously published multiparameter model (Whitfield model), which is based on interventricular septal angle, ventricular mass index and diastolic pulmonary artery area. The model was evaluated in a test cohort.ResultsThe CLD-PH MRI model [= (-13.104) + (13.059 * VMI)-(0.237 * PA RAC) + (0.083 * Systolic Septal Angle)], had high accuracy in the test cohort (area under the ROC curve (0.91) (p < 0.0001), sensitivity 92.3%, specificity 70.2%, PPV 77.4%, and NPV 89.2%. The Whitfield model also had high accuracy in the test cohort (area under the ROC curve (0.92) (p < 0.0001), sensitivity 80.8%, specificity 87.2%, PPV 87.5%, and NPV 80.4%.ConclusionThe CLD-PH MRI model and Whitfield model have high accuracy to detect severe PH in CLD, and have strong prognostic value.
Project description:Genome wide DNA methylation profiling of normal and tumour prostate samples. The Illumina Infinium MethylationEPIC Human DNA methylation oligonucleotide beads was used to obtain DNA methylation profiles across approximately 850,000 CpGs. Comparative assessment was carried out.
Project description:Non-invasive quantitation of liver disease using multiparametric magnetic resonance imaging (MRI) could refine clinical care pathways, trial design and preclinical drug development. The aim of this study was to evaluate the use of multiparametric MRI in experimental models of liver disease. Liver injury was induced in rats using 4 or 12 weeks of carbon tetrachloride (CCl4) intoxication and 4 or 8 weeks on a methionine and choline deficient (MCD) diet. Liver MRI was performed using a 7.0 Tesla small animal scanner at baseline and specified timepoints after liver injury. Multiparametric liver MRI parameters [T1 mapping, T2* mapping and proton density fat fraction (PDFF)] were correlated with gold standard histopathological measures. Mean hepatic T1 increased significantly in rats treated with CCl4 for 12 weeks compared to controls [1122±78 ms versus 959±114 ms; d=162.7, 95% CI (11.92, 313.4), P=0.038] and correlated strongly with histological collagen content (rs=0.717, P=0.037). In MCD diet-treated rats, hepatic PDFF correlated strongly with histological fat content (rs=0.819, P<0.0001), steatosis grade (rs=0.850, P<0.0001) and steatohepatitis score (rs=0.818, P<0.0001). Although there was minimal histological iron, progressive fat accumulation in MCD diet-treated livers significantly shortened T2*. In preclinical models, quantitative MRI markers correlated with histopathological assessments, especially for fatty liver disease. Validation in longitudinal studies is required.This article has an associated First Person interview with the first author of the paper.
Project description:STUDY OBJECTIVE: To study whether sleep and circadian rhythm disturbances in patients with Huntington's disease (HD) arise from dysfunction of the body's master clock, the hypothalamic suprachiasmatic nucleus. DESIGN: Postmortem cohort study. PATIENTS: Eight patients with HD and eight control subjects matched for sex, age, clock time and month of death, postmortem delay, and fixation time of paraffin-embedded hypothalamic tissue. MEASUREMENTS AND RESULTS: Using postmortem paraffin-embedded tissue, we assessed the functional integrity of the suprachiasmatic nucleus in patients with HD and control subjects by determining the expression of two major regulatory neuropeptides, vasoactive intestinal polypeptide and arginine vasopressin. Additionally, we studied melatonin 1 and 2 receptor expression. Compared with control subjects, the suprachiasmatic nucleus contained 85% fewer neurons immunoreactive for vasoactive intestinal polypeptide and 33% fewer neurons for arginine vasopressin in patients with HD (P = 0.002 and P = 0.027). The total amount of vasoactive intestinal polypeptide and arginine vasopressin messenger RNA was unchanged. No change was observed in the number of melatonin 1 or 2 receptor immunoreactive neurons. CONCLUSIONS: These findings indicate posttranscriptional neuropeptide changes in the suprachiasmatic nucleus of patients with HD, and suggest that sleep and circadian rhythm disorders in these patients may at least partly arise from suprachiasmatic nucleus dysfunction.
Project description:BackgroundDisruption of brain oxygen delivery and consumption after hypoxic-ischemic injury contributes to neonatal mortality and neurological impairment. Measuring cerebral hemodynamic parameters, including cerebral blood flow (CBF), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO2 ), is clinically important.PurposePhase-contrast (PC), velocity-selective arterial spin labeling (VSASL), and T2 -relaxation-under-phase-contrast (TRUPC) are magnetic resonance imaging (MRI) techniques that have shown promising results in assessing cerebral hemodynamics in humans. We aimed to test their feasibility in quantifying CBF, OEF, and CMRO2 in piglets.Study typeProspective.Animal modelTen neonatal piglets subacutely recovered from global hypoxia-ischemia (N = 2), excitotoxic brain injury (N = 6), or sham procedure (N = 2).Field strength/sequenceVSASL, TRUPC, and PC MRI acquired at 3.0 T.AssessmentRegional CBF was measured by VSASL. Global CBF was quantified by both PC and VSASL. TRUPC assessed OEF at the superior sagittal sinus (SSS) and internal cerebral veins (ICVs). CMRO2 was calculated from global CBF and SSS-derived OEF. End-tidal carbon dioxide (EtCO2 ) levels of the piglets were also measured. Brain damage was assessed in tissue sections postmortem by counting damaged neurons.Statistical testsSpearman correlations were performed to evaluate associations among CBF (by PC or VSASL), OEF, CMRO2 , EtCO2 , and the pathological neuron counts. Paired t-test was used to compare OEF at SSS with OEF at ICV.ResultsGlobal CBF was 32.1 ± 14.9 mL/100 g/minute and 30.9 ± 8.3 mL/100 g/minute for PC and VSASL, respectively, showing a significant correlation (r = 0.82, P < 0.05). OEF was 54.9 ± 8.8% at SSS and 46.1 ± 5.6% at ICV, showing a significant difference (P < 0.05). Global CMRO2 was 79.1 ± 26.2 μmol/100 g/minute and 77.2 ± 12.2 μmol/100 g/minute using PC and VSASL-derived CBF, respectively. EtCO2 correlated positively with PC-based CBF (r = 0.81, P < 0.05) but negatively with OEF at SSS (r = -0.84, P < 0.05). Relative CBF of subcortical brain regions and OEF at ICV did not significantly correlate, respectively, with the ratios of degenerating-to-total neurons (P = 0.30, P = 0.10).Data conclusionNon-contrast MRI can quantify cerebral hemodynamic parameters in normal and brain-injured neonatal piglets.Level of evidence1 TECHNICAL EFFICACY STAGE: 2.
Project description:Background & aimsHepatic venous pressure gradient (HVPG) measurement is currently the only validated technique to accurately evaluate changes in portal pressure. In this study, we evaluate the use of non-contrast quantitative magnetic resonance imaging (MRI) as a surrogate measure of portal pressure.MethodsThirty patients undergoing HVPG measurement were prospectively recruited. MR parameters of longitudinal relaxation time (T1), perfusion of the liver and spleen (by arterial spin labelling), and blood flow in the portal, splanchnic and collateral circulation (by phase contrast MRI) were assessed. We estimated the liver stiffness measurement (LSM) and enhanced liver fibrosis (ELF) score. The correlation of all non-invasive parameters with HVPG was evaluated.ResultsThe mean (range) HVPG of the patients was 9.8 (1-22) mmHg, and 14 patients (48%) had clinically significant portal hypertension (CSPH, HVPG ⩾10mmHg). Liver T1 relaxation time, splenic artery and superior mesenteric artery velocity correlated significantly with HVPG. Using multiple linear regression, liver T1 and splenic artery velocity remained as the two parameters in the multivariate model significantly associated with HVPG (R=0.90, p<0.001). This correlation was maintained in patients with CSPH (R=0.85, p<0.001). A validation cohort (n=10) showed this linear model provided a good prediction of HVPG. LSM and ELF score correlated significantly with HVPG in the whole population but the correlation was absent in CSPH.ConclusionsMR parameters related to both hepatic architecture and splanchnic haemodynamics correlate significantly with HVPG. This proposed model, confirmed in a validation cohort, could replace the invasive HVPG measurement.Lay summaryIn patients with cirrhosis, the development and progression of portal hypertension is related to worse outcomes. However, the standard technique of assessing portal pressure is invasive and not widely used in clinical practice. Here, we have studied the use of non-invasive MRI in evaluating portal pressure. The MRI measures of liver architecture and blood flow in the splenic artery correlated well with portal pressure. Therefore, this non-invasive method can potentially be used to assess portal pressure in clinical trials and monitoring treatment in practice.