Unknown

Dataset Information

0

Identifying multimorbidity profiles associated with COVID-19 severity in chronic patients using network analysis in the PRECOVID Study.


ABSTRACT: A major risk factor of COVID-19 severity is the patient's health status at the time of the infection. Numerous studies focused on specific chronic diseases and identified conditions, mainly cardiovascular ones, associated with poor prognosis. However, chronic diseases tend to cluster into patterns, each with its particular repercussions on the clinical outcome of infected patients. Network analysis in our population revealed that not all cardiovascular patterns have the same risk of COVID-19 hospitalization or mortality and that this risk depends on the pattern of multimorbidity, besides age and sex. We evidenced that negative outcomes were strongly related to patterns in which diabetes and obesity stood out in older women and men, respectively. In younger adults, anxiety was another disease that increased the risk of severity, most notably when combined with menstrual disorders in women or atopic dermatitis in men. These results have relevant implications for organizational, preventive, and clinical actions to help meet the needs of COVID-19 patients.

SUBMITTER: Carmona-Pirez J 

PROVIDER: S-EPMC8857317 | biostudies-literature | 2022 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Identifying multimorbidity profiles associated with COVID-19 severity in chronic patients using network analysis in the PRECOVID Study.

Carmona-Pírez Jonás J   Gimeno-Miguel Antonio A   Bliek-Bueno Kevin K   Poblador-Plou Beatriz B   Díez-Manglano Jesús J   Ioakeim-Skoufa Ignatios I   González-Rubio Francisca F   Poncel-Falcó Antonio A   Prados-Torres Alexandra A   Gimeno-Feliu Luis A LA  

Scientific reports 20220218 1


A major risk factor of COVID-19 severity is the patient's health status at the time of the infection. Numerous studies focused on specific chronic diseases and identified conditions, mainly cardiovascular ones, associated with poor prognosis. However, chronic diseases tend to cluster into patterns, each with its particular repercussions on the clinical outcome of infected patients. Network analysis in our population revealed that not all cardiovascular patterns have the same risk of COVID-19 hos  ...[more]

Similar Datasets

| S-EPMC8997853 | biostudies-literature
2023-03-11 | PXD031813 | Pride
2022-03-01 | E-MTAB-10970 | biostudies-arrayexpress
2024-06-16 | PXD046103 | Pride
| S-EPMC8061091 | biostudies-literature
| S-EPMC9784129 | biostudies-literature
2023-07-19 | GSE236017 | GEO
2022-12-18 | GSE221234 | GEO
| S-EPMC9874836 | biostudies-literature
2023-07-19 | GSE235986 | GEO