Unknown

Dataset Information

0

Bubble-templated synthesis of nanocatalyst Co/C as NADH oxidase mimic.


ABSTRACT: Designing highly active nanozymes for various enzymatic reactions remains a challenge in practical applications and fundamental research. In this work, by studying the catalytic functions of natural NADH oxidase (NOX), we devised and synthesized a porous carbon-supported cobalt catalyst (Co/C) to mimic NOX. The Co/C can catalyze dehydrogenation of NADH and transfers electrons to O2 to produce H2O2. Density functional theory calculations reveal that the Co/C can catalyze O2 reduction to H2O2 or H2O considerably. The Co/C can also mediate electron transfer from NADH to heme protein cytochrome c, thereby exhibiting cytochrome c reductase-like activity. The Co/C nanoparticles can deplete NADH in cancer cells, induce increase of the reactive oxygen species, lead to impairment of oxidative phosphorylation and decrease in mitochondrial membrane potential, and cause ATP production to be damaged. This 'domino effect' facilitates the cell to approach apoptosis.

SUBMITTER: Chen J 

PROVIDER: S-EPMC8897313 | biostudies-literature | 2022 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Bubble-templated synthesis of nanocatalyst Co/C as NADH oxidase mimic.

Chen Jinxing J   Zheng Xiliang X   Zhang Jiaxin J   Ma Qian Q   Zhao Zhiwei Z   Huang Liang L   Wu Weiwei W   Wang Ying Y   Wang Jin J   Dong Shaojun S  

National science review 20211011 3


Designing highly active nanozymes for various enzymatic reactions remains a challenge in practical applications and fundamental research. In this work, by studying the catalytic functions of natural NADH oxidase (NOX), we devised and synthesized a porous carbon-supported cobalt catalyst (Co/C) to mimic NOX. The Co/C can catalyze dehydrogenation of NADH and transfers electrons to O<sub>2</sub> to produce H<sub>2</sub>O<sub>2</sub>. Density functional theory calculations reveal that the Co/C can c  ...[more]

Similar Datasets

| S-EPMC6168946 | biostudies-literature
| S-EPMC3190733 | biostudies-literature
| S-EPMC8817004 | biostudies-literature
| S-EPMC6985181 | biostudies-literature
| S-EPMC2783554 | biostudies-literature
| S-EPMC4864899 | biostudies-literature
| S-EPMC94295 | biostudies-literature
| S-EPMC4780693 | biostudies-literature
| S-EPMC11423319 | biostudies-literature
| S-EPMC5427908 | biostudies-literature