Unknown

Dataset Information

0

Biosynthesis and Heterologous Production of Mycosporine-Like Amino Acid Palythines.


ABSTRACT: Mycosporine-like amino acids (MAAs) are a family of natural products that are produced by a variety of organisms for protection from ultraviolet damage. In this work, we combined different bioinformatic approaches to assess the distribution of the MAA biosynthesis and identified a putative gene cluster from Nostoc linckia NIES-25 that encodes a short-chain dehydrogenase/reductase and a nonheme iron(II)- and 2-oxoglutarate-dependent oxygenase (MysH) as potential new biosynthetic enzymes. Heterologous expression of refactored gene clusters in E. coli produced two known biosynthetic intermediates, 4-deoxygadusol and mycosporine-glycine, and three disubstituted MAA analogues, porphyra-334, shinorine, and mycosporine-glycine-alanine. Importantly, the disubstituted MAAs were converted into palythines by MysH. Furthermore, biochemical characterization revealed the substrate preference of recombinant MysD, a d-Ala-d-Ala ligase-like enzyme for the formation of disubstituted MAAs. Our study advances the biosynthetic understanding of an important family of natural UV photoprotectants and opens new opportunities to the development of next-generation sunscreens.

SUBMITTER: Chen M 

PROVIDER: S-EPMC8905528 | biostudies-literature | 2021 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Biosynthesis and Heterologous Production of Mycosporine-Like Amino Acid Palythines.

Chen Manyun M   Rubin Garret M GM   Jiang Guangde G   Raad Zachary Z   Ding Yousong Y  

The Journal of organic chemistry 20210518 16


Mycosporine-like amino acids (MAAs) are a family of natural products that are produced by a variety of organisms for protection from ultraviolet damage. In this work, we combined different bioinformatic approaches to assess the distribution of the MAA biosynthesis and identified a putative gene cluster from <i>Nostoc linckia</i> NIES-25 that encodes a short-chain dehydrogenase/reductase and a nonheme iron(II)- and 2-oxoglutarate-dependent oxygenase (MysH) as potential new biosynthetic enzymes. H  ...[more]

Similar Datasets

| S-EPMC4135781 | biostudies-literature
| S-EPMC5068148 | biostudies-literature
| S-EPMC7546825 | biostudies-literature
| S-EPMC10666671 | biostudies-literature
| S-EPMC10614408 | biostudies-literature
2008-03-18 | GSE7369 | GEO
| S-EPMC4033647 | biostudies-literature
| S-EPMC6389850 | biostudies-literature
| S-EPMC7073964 | biostudies-literature
| S-EPMC8842606 | biostudies-literature