Unknown

Dataset Information

0

Extracorporeal Removal of Thermosensitive Liposomal Doxorubicin from Systemic Circulation after Tumor Delivery to Reduce Toxicities.


ABSTRACT: Thermosensitive liposomal doxorubicin (TSL-Dox) combined with localized hyperthermia enables targeted drug delivery. Tumor drug uptake occurs only during hyperthermia. We developed a novel method for removal of systemic TSL-Dox remaining after hyperthermia-triggered delivery to reduce toxicities. The carotid artery and jugular vein of Norway brown rats carrying two subcutaneous BN-175 tumors were catheterized. After allowing the animals to recover, TSL-Dox was infused at 7 mg/kg dose. Drug delivery to one of the tumors was performed by inducing 15 min microwave hyperthermia (43 °C). At the end of hyperthermia, an extracorporeal circuit (ECC) comprising a heating module to release drug from TSL-Dox followed by an activated carbon filter to remove free drug was established for 1 h (n = 3). A computational model simulated TSL-Dox pharmacokinetics, including ECC filtration, and predicted cardiac Dox uptake. In animals receiving ECC, we were able to remove 576 ± 65 mg of Dox (29.7 ± 3.7% of the infused dose) within 1 h, with a 2.9-fold reduction of plasma AUC. Fluorescent monitoring enabled real-time quantification of blood concentration and removed drug. Computational modeling predicted that up to 59% of drug could be removed with an ideal filter, and that cardiac uptake can be reduced up to 7×. We demonstrated removal of drug remaining after tumor delivery, reduced plasma AUC, and reduced cardiac uptake, suggesting reduced toxicity.

SUBMITTER: Motamarry A 

PROVIDER: S-EPMC8909191 | biostudies-literature | 2022 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Extracorporeal Removal of Thermosensitive Liposomal Doxorubicin from Systemic Circulation after Tumor Delivery to Reduce Toxicities.

Motamarry Anjan A   Wolfe A Marissa AM   Ramajayam Krishna K KK   Pattanaik Sanket S   Benton Thomas T   Peterson Yuri Y   Faridi Pegah P   Prakash Punit P   Twombley Katherine K   Haemmerich Dieter D  

Cancers 20220304 5


Thermosensitive liposomal doxorubicin (TSL-Dox) combined with localized hyperthermia enables targeted drug delivery. Tumor drug uptake occurs only during hyperthermia. We developed a novel method for removal of systemic TSL-Dox remaining after hyperthermia-triggered delivery to reduce toxicities. The carotid artery and jugular vein of Norway brown rats carrying two subcutaneous BN-175 tumors were catheterized. After allowing the animals to recover, TSL-Dox was infused at 7 mg/kg dose. Drug deliv  ...[more]

Similar Datasets

| S-EPMC6758722 | biostudies-literature
| S-EPMC8912701 | biostudies-literature
| S-EPMC5378154 | biostudies-literature
| S-EPMC4006748 | biostudies-literature
| S-EPMC6095431 | biostudies-literature
| S-EPMC5538251 | biostudies-literature
| S-EPMC2784200 | biostudies-literature
| S-EPMC10517508 | biostudies-literature
| S-EPMC3749772 | biostudies-literature
| S-EPMC5804143 | biostudies-literature