Unknown

Dataset Information

0

'On the Spot' Digital Pathology of Breast Cancer Based on Single-Cell Mass Spectrometry Imaging.


ABSTRACT: The molecular pathology of breast cancer is challenging due to the complex heterogeneity of cellular subtypes. The ability to directly identify and visualize cell subtype distribution at the single-cell level within a tissue section enables precise and rapid diagnosis and prognosis. Here, we applied mass spectrometry imaging (MSI) to acquire and visualize the molecular profiles at the single-cell and subcellular levels of 14 different breast cancer cell lines. We built a molecular library of genetically well-characterized cell lines. Multistep processing, including deep learning, resulted in a breast cancer subtype, the cancer's hormone status, and a genotypic recognition model based on metabolic phenotypes with cross-validation rates of up to 97%. Moreover, we applied our single-cell-based recognition models to complex tissue samples, identifying cell subtypes in tissue context within seconds during measurement. These data demonstrate "on the spot" digital pathology at the single-cell level using MSI, and they provide a framework for fast and accurate high spatial resolution diagnostics and prognostics.

SUBMITTER: Cuypers E 

PROVIDER: S-EPMC9047448 | biostudies-literature | 2022 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

'On the Spot' Digital Pathology of Breast Cancer Based on Single-Cell Mass Spectrometry Imaging.

Cuypers Eva E   Claes Britt S R BSR   Biemans Rianne R   Lieuwes Natasja G NG   Glunde Kristine K   Dubois Ludwig L   Heeren Ron M A RMA  

Analytical chemistry 20220412 16


The molecular pathology of breast cancer is challenging due to the complex heterogeneity of cellular subtypes. The ability to directly identify and visualize cell subtype distribution at the single-cell level within a tissue section enables precise and rapid diagnosis and prognosis. Here, we applied mass spectrometry imaging (MSI) to acquire and visualize the molecular profiles at the single-cell and subcellular levels of 14 different breast cancer cell lines. We built a molecular library of gen  ...[more]

Similar Datasets

2016-11-15 | GSE89818 | GEO
| S-EPMC10076023 | biostudies-literature
| S-EPMC7540554 | biostudies-literature
| S-EPMC6609678 | biostudies-literature
| S-EPMC5327638 | biostudies-literature
| S-EPMC3244671 | biostudies-other
| S-EPMC8386113 | biostudies-literature
| S-EPMC11466816 | biostudies-literature
| S-EPMC6250575 | biostudies-literature
| S-EPMC10457347 | biostudies-literature