Project description:Standard treatment for patients with IDH-mutant gliomas with radiation therapy and chemotherapy is non-curative and associated with long-term neurotoxicity. This has created intense interest in targeted therapeutic strategies that are specifically designed of IDH-mutant tumors. Much progress has been made in understanding the unique biology of IDH-mutant gliomas, and now various IDH-mutant-specific targeting strategies are in various phases of development. Here, we will review a range of IDH-mutant targeting treatments being explored, including direct IDH inhibitors, as well as strategies that take advantage of IDH-mutant-specific vulnerabilities.
Project description:Seizures are a frequent complication of adult-type diffuse gliomas, and are often difficult to control with medications. Gliomas with mutations in isocitrate dehydrogenase 1 or 2 (IDHmut) are more likely than IDH-wild type (IDHwt) gliomas to cause seizures as part of their initial clinical presentation. However, whether IDHmut is also associated with seizures during the remaining disease course, and whether IDHmut inhibitors can reduce seizure risk, are unclear. Clinical multivariable analyses showed that preoperative seizures, glioma location, extent of resection, and glioma molecular subtype (including IDHmut status) all contributed to postoperative seizure risk in adult-type diffuse glioma patients, and that postoperative seizures were often associated with tumor recurrence. Experimentally, the metabolic product of IDHmut, d-2-hydroxyglutarate, rapidly synchronized neuronal spike firing in a seizure-like manner, but only when non-neoplastic glial cells were present. In vitro and in vivo models recapitulated IDHmut glioma-associated seizures, and IDHmut inhibitors currently being evaluated in glioma clinical trials inhibited seizures in those models, independent of their effects on glioma growth. These data show that postoperative seizure risk in adult-type diffuse gliomas varies in large part by molecular subtype, and that IDHmut inhibitors could play a key role in mitigating such risk in IDHmut glioma patients.
Project description:Mutations of the isocitrate dehydrogenase (IDH) 1 and 2 genes occur in ~80% of lower-grade (WHO grade II and grade III) gliomas. Mutant IDH produces (R)-2-hydroxyglutarate, which induces DNA hypermethylation and presumably drives tumorigenesis. Interestingly, IDH mutations are associated with improved survival in glioma patients, but the underlying mechanism for the difference in survival remains unclear. Through comparative analyses of 286 cases of IDH-wildtype and IDH-mutant lower-grade glioma from a TCGA data set, we report that IDH-mutant gliomas have increased expression of tumor-suppressor genes (NF1, PTEN, and PIK3R1) and decreased expression of oncogenes(AKT2, ARAF, ERBB2, FGFR3, and PDGFRB) and glioma progression genes (FOXM1, IGFBP2, and WWTR1) compared with IDH-wildtype gliomas. Furthermore, each of these genes is prognostic in overall gliomas; however, within the IDH-mutant group, none remains prognostic except IGFBP2 (encodinginsulin-like growth factor binding protein 2). Through validation in an independent cohort, we show that patients with low IGFBP2 expressiondisplay a clear advantage in overall and disease-free survival, whereas those with high IGFBP2 expressionhave worse median survival than IDH-wildtype patients. These observations hold true across different histological and molecular subtypes of lower-grade glioma. We propose therefore that an unexpected biological consequence of IDH mutations in glioma is to ameliorate patient survival by promoting tumor-suppressor signaling while inhibiting that of oncogenes, particularly IGFBP2.
Project description:Roughly 50% of adult gliomas harbor isocitrate dehydrogenase (IDH) mutations. According to the 2021 WHO classification guideline, these gliomas are diagnosed as astrocytomas, harboring no 1p19q co-deletion, or oligodendrogliomas, harboring 1p19q co-deletion. Recent studies report that IDH-mutant gliomas share a common developmental hierarchy. However, the neural lineages and differentiation stages in IDH-mutant gliomas remain inadequately characterized. Using bulk transcriptomes and single-cell transcriptomes, we identified genes enriched in IDH-mutant gliomas with or without 1p19q co-deletion, we also assessed the expression pattern of stage-specific signatures and key regulators of oligodendrocyte lineage differentiation. We compared the expression of oligodendrocyte lineage stage-specific markers between quiescent and proliferating malignant single cells. The gene expression profiles were validated using RNAscope analysis and myelin staining and were further substantiated using data of DNA methylation and single-cell ATAC-seq. As a control, we assessed the expression pattern of astrocyte lineage markers. Genes concordantly enriched in both subtypes of IDH-mutant gliomas are upregulated in oligodendrocyte progenitor cells (OPC). Signatures of early stages of oligodendrocyte lineage and key regulators of OPC specification and maintenance are enriched in all IDH-mutant gliomas. In contrast, signature of myelin-forming oligodendrocytes, myelination regulators, and myelin components are significantly down-regulated or absent in IDH-mutant gliomas. Further, single-cell transcriptomes of IDH-mutant gliomas are similar to OPC and differentiation-committed oligodendrocyte progenitors, but not to myelinating oligodendrocyte. Most IDH-mutant glioma cells are quiescent; quiescent cells and proliferating cells resemble the same differentiation stage of oligodendrocyte lineage. Mirroring the gene expression profiles along the oligodendrocyte lineage, analyses of DNA methylation and single-cell ATAC-seq data demonstrate that genes of myelination regulators and myelin components are hypermethylated and show inaccessible chromatin status, whereas regulators of OPC specification and maintenance are hypomethylated and show open chromatin status. Markers of astrocyte precursors are not enriched in IDH-mutant gliomas. Our studies show that despite differences in clinical manifestation and genomic alterations, all IDH-mutant gliomas resemble early stages of oligodendrocyte lineage and are stalled in oligodendrocyte differentiation due to blocked myelination program. These findings provide a framework to accommodate biological features and therapy development for IDH-mutant gliomas.
Project description:BackgroundRecurrent mutations in the isocitrate dehydrogenase 1 (IDH1) and IDH2 genes, which are frequent in gliomas, result in marked accumulation of the metabolic by-product 2-hydroxyglutarate (2-HG) within tumors. In other malignancies, such as acute myeloid leukemia, presence of IDH mutation is associated with elevated 2-HG levels in serum or urine compartments. Circulating 2-HG in patients with glial malignancies has not been thoroughly investigated.MethodsIn this study, we analyzed 2-HG levels in the serum and urine of a large set of patients with IDH-mutant and IDH-wild-type glioma, and the cerebrospinal fluid (CSF) from a subset of this cohort.ResultsWe found that 2-HG was elevated in the urine of patients with IDH-mutant versus IDH-wild-type glioma, although no significant differences in 2-HG levels were observed in the serum or the small set of CSF samples obtained. Among patients with IDH-mutant glioma, 2-HG levels did not differ based on the histopathologic grade, genetic subtype (TP53 mutant or 1p/19q codeleted), presence of a canonical (IDH1 R132H) or noncanonical (any other IDH variant) mutation, or treatment type.ConclusionOur finding suggests that urinary 2-HG is increased among patients with IDH-mutant gliomas, and may represent a future surrogate, noninvasive biomarker to aid in diagnosis, prognosis, and management.Implications for practicePatients with glioma who harbor mutations in isocitrate dehydrogenase genes showed selective elevation of the oncometabolite 2-hydroxyglutarate in the urine. Similar elevations were not identified in the serum or cerebrospinal fluid. 2-Hydroxyglutarate may serve as a useful, noninvasive biomarker to stratify patients newly diagnosed with glioma with regard to prognosis and management.
Project description:BackgroundIsocitrate dehydrogenase (IDH) mutant gliomas are a distinct subtype, reflected in the World Health Organization (WHO) 2016 revised diagnostic criteria. To inform IDH-targeting trial design, we sought to characterize outcomes exclusively within IDH mutant gliomas.MethodsWe retrospectively analyzed 275 IDH mutant glioma patients treated at our institution. Progression was determined using low-grade glioma criteria from Response Assessment in Neuro-Oncology. We calculated survival statistics with the Kaplan-Meier method, and survival proportions were correlated with molecular, histologic, and clinical factors.ResultsDuring a median follow-up of 6.4 years, 44 deaths (7.6%) and 149 first progression (PFS1) events (54.1%) were observed. Median PFS1 was 5.7 years (95% CI: 4.7-6.4) and OS was 18.7 years (95% CI: 12.2 y-not reached). Consistent with prior studies, we observed an association of grade, molecular diagnosis, and treatment with PFS1. Following the first progressive episode, 79 second progression events occurred during a median follow-up period of 4.1 years. Median PFS following an initial progressive event (PFS2) was accelerated at 3.1 years (95% CI: 2.1-4.1). PFS2 was a surrogate prognostic marker, identifying patients with poorer overall survival.ConclusionWe report outcomes in a large cohort of IDH mutant glioma, providing a well-characterized historical control population for future clinical trial design. Notably, the interval between first and second recurrence (PFS2, 3.0 y) is shorter than time from diagnosis to first recurrence (PFS1, 5.7 y), evidence that these tumors clinically degenerate from an indolent course to an accelerated malignant phase. Thus, PFS2 represents a relevant outcome for trials investigating drug efficacy at recurrence.
Project description:PurposeMutations in the isocitrate dehydrogenase (IDH) genes IDH1 and IDH2 have critical diagnostic and prognostic significance in diffuse gliomas. Neomorphic mutant IDH activity has been previously implicated in T-cell suppression; however, the effects of IDH mutations on intratumoral myeloid populations remain underexplored. In this study, we investigate the influence of IDH status on the myeloid compartment using human glioma specimens and preclinical models.Experimental designWe performed RNA sequencing and quantitative immunofluorescence on newly diagnosed, treatment-naive IDH-mutant grade 4 astrocytoma and IDH-wild-type (IDH-WT) glioblastoma (GBM) specimens. We also generated a syngeneic murine model, comparing transcriptomic and cell-level changes in paired isogenic glioma lines that differ only in IDH mutational status.ResultsAmong patient samples, IDH-mutant tumors displayed an underrepresentation of suppressive myeloid transcriptional signatures, which was confirmed at the cellular level with decreased numbers of intratumoral M2-like macrophages and myeloid-derived suppressor cells. Introduction of the mutant IDH enzyme into murine glioma was sufficient to recapitulate the transcriptomic and cellular shifts observed in patient samples.ConclusionsWe provide transcriptomic and cellular evidence that mutant IDH is associated with a quantitative reduction of suppressive myeloid cells in gliomas and that introduction of the mutant enzyme is sufficient to result in corresponding cellular changes using an in vivo preclinical model. These data advance our understanding of high-grade gliomas by identifying key myeloid cell populations that are reprogrammed by mutant IDH and may be targetable through therapeutic approaches.
Project description:Identifying isocitrate dehydrogenase (IDH)-mutation and glioma subtype during surgery instead of days later can aid in modifying tumor resection strategies for better survival outcomes. We report intraoperative identification of IDH-mutant glioma (N = 12 patients) with a clinically compatible fluorescence lifetime imaging (FLIm) device (excitation: 355 nm; emission spectral bands: 390/40 nm, 470/28 nm, 542/50 nm). The fluorescence-derived parameters were analyzed to study the optical contrast between IDH-mutant tumors and surrounding brain tissue. IDH-mutant oligodendrogliomas exhibited shorter lifetimes (3.3 ± 0.1 ns) than IDH-mutant astrocytomas (4.1 ± 0.1 ns). Both IDH-mutant glioma subtypes had shorter lifetimes than white matter (4.6 ± 0.4 ns) but had comparable lifetimes to cortex. Lifetimes also increased with malignancy grade within IDH-mutant oligodendrogliomas (grade 2: 2.96 ± 0.08 ns, grade 3: 3.4 ± 0.3 ns) but not within IDH-mutant astrocytomas. The current results support the feasibility of FLIm as a surgical adjuvant for identifying IDH-mutant glioma tissue.
Project description:Approximately 80% of low-grade glioma (LGGs) harbor mutant isocitrate dehydrogenase 1/2 (IDH1/2) driver mutations leading to accumulation of the oncometabolite 2-hydroxyglutarate (2-HG). Thus, inhibition of mutant IDH is considered a potential therapeutic target. Several mutant IDH inhibitors are currently in clinical trials, including AG-881 and BAY-1436032. However, to date, early detection of response remains a challenge. In this study we used high resolution 1H magnetic resonance spectroscopy (1H-MRS) to identify early noninvasive MR (Magnetic Resonance)-detectable metabolic biomarkers of response to mutant IDH inhibition. In vivo 1H-MRS was performed on mice orthotopically-implanted with either genetically engineered (U87IDHmut) or patient-derived (BT257 and SF10417) mutant IDH1 cells. Treatment with either AG-881 or BAY-1436032 induced a significant reduction in 2-HG. Moreover, both inhibitors led to a significant early and sustained increase in glutamate and the sum of glutamate and glutamine (GLX) in all three models. A transient early increase in N-acetylaspartate (NAA) was also observed. Importantly, all models demonstrated enhanced animal survival following both treatments and the metabolic alterations were observed prior to any detectable differences in tumor volume between control and treated tumors. Our study therefore identifies potential translatable early metabolic biomarkers of drug delivery, mutant IDH inhibition and glioma response to treatment with emerging clinically relevant therapies.