Influence of nitrogen/phosphorus-doped carbon dots on polyamide thin film membranes for water vapor/N2 mixture gas separation.
Ontology highlight
ABSTRACT: Nanoparticles have been attracting attention because they can significantly improve the performance of membranes when added in small amounts. In this study, the effect of polyamide membranes incorporating hydrophilic nitrogen/phosphorus-doped carbon dots (NP-CDs) to enhance water vapor/N2 separation has been investigated. NP-CD nanoparticles with many hydrophilic functional groups are synthesized from chitosan by a one-pot green method and introduced to the surface of the polysulfone (PSf) substrates by interfacial polymerization reaction. The mean particle diameter of NP-CDs, estimated from transmission electron microscopy images, is 2.6 nm. By adding NP-CDs (0-1.5 wt%) to the polyamide layer, the contact angles of the membranes dramatically decreased from 65° (PSf) to <9° (thin film nanocomposite (TFN)), which means that the TFN membranes become significantly hydrophilic. From the water vapor separation results, the addition of NP-CDs in the polyamide layer improves the water vapor permeance from 1511 (thin film composite (TFC) without nanoparticles) to 2448 GPU (TFN with 1.0 wt% NP-CD loading, CD-TFN(1.0)) and the water vapor/N2 selectivity from 73 (TFC) to 854 (CD-TFN(1.0)). To our knowledge, this is the first study of highly functionalized NP-CD-incorporated polyamide membranes to enhance water vapor separation.
SUBMITTER: Shirke YM
PROVIDER: S-EPMC9072930 | biostudies-literature | 2019 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA