Unknown

Dataset Information

0

Heterostructured ferromagnet-topological insulator with dual-phase magnetic properties.


ABSTRACT: The introduction of ferromagnetism at the surface of a topological insulator (TI) produces fascinating spin-charge phenomena. It has been assumed that these fascinating effects are associated with a homogeneous ferromagnetic (FM) layer possessing a single type of magnetic phase. However, we obtained phase separation within the FM layer of a Ni80Fe20/Bi2Se3 heterostructure. This phase separation was caused by the diffusion of Ni into Bi2Se3, forming a ternary magnetic phase of Ni:Bi2Se3. The inward diffusion of Ni led to the formation of an FeSe phase outward, transforming the original Ni80Fe20/Bi2Se3 into a sandwich structure comprising FeSe/Ni:Bi2Se3/Bi2Se3 with dual-phase magnetic characteristics similar to that driven by the proximity effect. Such a phenomenon might have been overlooked in previous studies with a strong focus on the proximity effect. X-ray magnetic spectroscopy revealed that FeSe and Ni:Bi2Se3 possess horizontal and perpendicular magnetic anisotropy, respectively. The overall magnetic order of the heterostructure can be easily tuned by adjusting the thickness of the Bi2Se3 as it compromises the magnetic orders of the two magnetic phases. This discovery is essential to the quantification of spin-charge phenomena in similar material combinations where the FM layer is composed of multiple elements.

SUBMITTER: Chang SJ 

PROVIDER: S-EPMC9078499 | biostudies-literature | 2018 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Heterostructured ferromagnet-topological insulator with dual-phase magnetic properties.

Chang Shu-Jui SJ   Chuang Pei-Yu PY   Chong Cheong-Wei CW   Chen Yu-Jung YJ   Andrew Huang Jung-Chun JC   Chen Po-Wen PW   Tseng Yuan-Chieh YC  

RSC advances 20180219 14


The introduction of ferromagnetism at the surface of a topological insulator (TI) produces fascinating spin-charge phenomena. It has been assumed that these fascinating effects are associated with a homogeneous ferromagnetic (FM) layer possessing a single type of magnetic phase. However, we obtained phase separation within the FM layer of a Ni<sub>80</sub>Fe<sub>20</sub>/Bi<sub>2</sub>Se<sub>3</sub> heterostructure. This phase separation was caused by the diffusion of Ni into Bi<sub>2</sub>Se<su  ...[more]

Similar Datasets

| S-EPMC4298741 | biostudies-literature
| S-EPMC5364463 | biostudies-literature
| S-EPMC9798907 | biostudies-literature
| S-EPMC4555097 | biostudies-literature
| S-EPMC5760711 | biostudies-literature
| S-EPMC5677620 | biostudies-literature
| S-EPMC4431390 | biostudies-other
| S-EPMC7467763 | biostudies-literature
| S-EPMC5630236 | biostudies-literature
| S-EPMC8863830 | biostudies-literature