A guanidyl-functionalized TiO2 nanoparticle-anchored graphene nanohybrid for enhanced capture of phosphopeptides.
Ontology highlight
ABSTRACT: TiO2-based MOAC (metal oxide affinity chromatography) nanomaterials are regarded as one of the most promising materials for phosphopeptide enrichment. However, the serious non-specific adsorption of acidic peptides and the limited chemisorption performance to phosphopeptides will greatly reduce the enrichment efficiency. To overcome the above problems, a novel TiO2 hybrid material with guanidyl-functionalized TiO2 nanoparticles (GF-TiO2) anchored on the surface of a graphene oxide (GO) platform (denoted as GF-TiO2-GO) is successfully synthesized and applied as a biofunctional adsorbent for selective enrichment of trace phosphopeptides. Due to the improved selectivity to phosphopeptides and larger loading capacity, the novel GF-TiO2-GO nanohybrids exhibited higher selectivity toward phosphopeptides and a lower detection limit even when the concentration of β-casein was decreased to only 1 × 10-11 M. The selective enrichment test toward phosphopeptides from the tryptic digests of nonfat milk and human serum further validated that the GF-TiO2-GO nanohybrids were capable of selectively capturing global phosphopeptides from complicated biological samples.
SUBMITTER: Liu H
PROVIDER: S-EPMC9084561 | biostudies-literature | 2018 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA