Unknown

Dataset Information

0

PRI: Re-Analysis of a Public Mass Cytometry Dataset Reveals Patterns of Effective Tumor Treatments.


ABSTRACT: Recently, mass cytometry has enabled quantification of up to 50 parameters for millions of cells per sample. It remains a challenge to analyze such high-dimensional data to exploit the richness of the inherent information, even though many valuable new analysis tools have already been developed. We propose a novel algorithm "pattern recognition of immune cells (PRI)" to tackle these high-dimensional protein combinations in the data. PRI is a tool for the analysis and visualization of cytometry data based on a three or more-parametric binning approach, feature engineering of bin properties of multivariate cell data, and a pseudo-multiparametric visualization. Using a publicly available mass cytometry dataset, we proved that reproducible feature engineering and intuitive understanding of the generated bin plots are helpful hallmarks for re-analysis with PRI. In the CD4+T cell population analyzed, PRI revealed two bin-plot patterns (CD90/CD44/CD86 and CD90/CD44/CD27) and 20 bin plot features for threshold-independent classification of mice concerning ineffective and effective tumor treatment. In addition, PRI mapped cell subsets regarding co-expression of the proliferation marker Ki67 with two major transcription factors and further delineated a specific Th1 cell subset. All these results demonstrate the added insights that can be obtained using the non-cluster-based tool PRI for re-analyses of high-dimensional cytometric data.

SUBMITTER: Hoang Y 

PROVIDER: S-EPMC9110672 | biostudies-literature | 2022

REPOSITORIES: biostudies-literature

altmetric image

Publications

PRI: Re-Analysis of a Public Mass Cytometry Dataset Reveals Patterns of Effective Tumor Treatments.

Hoang Yen Y   Gryzik Stefanie S   Hoppe Ines I   Rybak Alexander A   Schädlich Martin M   Kadner Isabelle I   Walther Dirk D   Vera Julio J   Radbruch Andreas A   Groth Detlef D   Baumgart Sabine S   Baumgrass Ria R  

Frontiers in immunology 20220503


Recently, mass cytometry has enabled quantification of up to 50 parameters for millions of cells per sample. It remains a challenge to analyze such high-dimensional data to exploit the richness of the inherent information, even though many valuable new analysis tools have already been developed. We propose a novel algorithm "pattern recognition of immune cells (PRI)" to tackle these high-dimensional protein combinations in the data. PRI is a tool for the analysis and visualization of cytometry d  ...[more]

Similar Datasets

| S-EPMC10203138 | biostudies-literature
| S-EPMC9210814 | biostudies-literature
| S-EPMC8854441 | biostudies-literature
| S-EPMC7153291 | biostudies-literature
| S-EPMC7653073 | biostudies-literature
| S-EPMC11014725 | biostudies-literature
2018-09-26 | GSE120446 | GEO
| S-EPMC6854009 | biostudies-literature
| S-EPMC8115071 | biostudies-literature
| S-EPMC5995043 | biostudies-literature