Unknown

Dataset Information

0

Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing.


ABSTRACT: Neuromorphic computing, a computing paradigm inspired by the human brain, enables energy-efficient and fast artificial neural networks. To process information, neuromorphic computing directly mimics the operation of biological neurons in a human brain. To effectively imitate biological neurons with electrical devices, memristor-based artificial neurons attract attention because of their simple structure, energy efficiency, and excellent scalability. However, memristor's non-reliability issues have been one of the main obstacles for the development of memristor-based artificial neurons and neuromorphic computings. Here, we show a memristor 1R cross-bar array without transistor devices for individual memristor access with low variation, 100% yield, large dynamic range, and fast speed for artificial neuron and neuromorphic computing. Based on the developed memristor, we experimentally demonstrate a memristor-based neuron with leaky-integrate and fire property with excellent reliability. Furthermore, we develop a neuro-memristive computing system based on the short-term memory effect of the developed memristor for efficient processing of sequential data. Our neuro-memristive computing system successfully trains and generates bio-medical sequential data (antimicrobial peptides) while using a small number of training parameters. Our results open up the possibility of memristor-based artificial neurons and neuromorphic computing systems, which are essential for energy-efficient edge computing devices.

SUBMITTER: Park SO 

PROVIDER: S-EPMC9166790 | biostudies-literature | 2022 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing.

Park See-On SO   Jeong Hakcheon H   Park Jongyong J   Bae Jongmin J   Choi Shinhyun S  

Nature communications 20220603 1


Neuromorphic computing, a computing paradigm inspired by the human brain, enables energy-efficient and fast artificial neural networks. To process information, neuromorphic computing directly mimics the operation of biological neurons in a human brain. To effectively imitate biological neurons with electrical devices, memristor-based artificial neurons attract attention because of their simple structure, energy efficiency, and excellent scalability. However, memristor's non-reliability issues ha  ...[more]

Similar Datasets

| S-EPMC11315111 | biostudies-literature
| S-EPMC9513833 | biostudies-literature
| S-EPMC9353447 | biostudies-literature
| S-EPMC11797559 | biostudies-literature
| S-EPMC9279478 | biostudies-literature
| S-EPMC7113278 | biostudies-literature
| S-EPMC11197568 | biostudies-literature
| S-EPMC11013421 | biostudies-literature
| S-EPMC7458436 | biostudies-literature
| S-EPMC10131856 | biostudies-literature