Project description:AimsEdema of the limbs is uncommon in idiopathic inflammatory myopathies (IIM). The few reported cases have been associated with severe and refractory dermatomyositis (DM), sometimes in association with cancers. We aimed to determine if edematous myositis is a homogeneous subtype based on clinical, serological and pathological features.MethodsThis is a retrospective observational study performed between 2008 and 2015 in the French national referral center for myositis. All adult patients with an inflammatory muscle biopsy and upper limbs edema were included as well as IIM cases without limb edema as controls. Clinical, biological and pathological features were collected.ResultsSeventeen edematous myositis were included and compared to 174 IIM without edema, including 50 DM controls. Edema was the first manifestation in 23% of patients. Muscle weakness was severe and symmetric, 71% of patients presented dysphagia and a restrictive ventilatory pattern was found in 40%. Fifty-two percent of patients had a typical DM skin rash and 23% had cancer within 3 years of diagnosing myositis. Fifty-three percent of patients presented a myositis specific antibody and only DM-specific antibodies were detected. Classic pathological DM features (perifascicular atrophy, perifascicular/perimysial perivascular inflammation) were uncommon but capillary C5b-9 deposition and MxA expression were seen in 79% and 73% of cases, respectively. A perimysial edema was found in 82% of cases. Seventeen percent of patients died (median follow up of 18 months). Edematous myositis demonstrated more marked capillary C5b-9 deposition compared to IIM controls. There was no clinical, biological or pathological difference with DM controls except for limb edema.ConclusionOur study underlines that limb edema could be a symptom of IIM and that edematous myositis are mostly DM. The vasculopathy seems to play a key role in its pathophysiology. Limb edema associated with muscle impairment should suggest the diagnosis of DM in clinical settings.
Project description:Dermatomyositis (DM) is an immune mediated inflammatory disease classically associated with muscular and cutaneous involvement. Existing studies have suggested characteristic nailfold findings may be observed in DM, indicating a potential role for nailfold microscopic examination in the diagnosis of DM. To that end, we performed a systematic review of literature pertaining to nailfold microscopic, capillaroscopic, and dermoscopic findings observed in patients with DM, with a secondary review of the association of nailfold microscopic findings with myositis-specific antibody (MSA) and myositis-associated antibody (MAA) status. Thirty-seven papers, representing 346 patients, met inclusion criteria. The most prevalent nailfold findings were evidence of increased vascular diameter (64.5%, n = 223) and decreased vascularity (57.5%, n = 199). Scleroderma-spectrum pattern and microhemorrhage or hemorrhage were both observed in 156 (45.1%) patients. Fifty-one patients had nailfold capillaroscopic findings reported in direct association with antibody positivity and demonstrated a range of nailfold findings, preliminarily suggesting associations between antibody-status and capillaroscopic findings. The results of our study align with existing data indicating the scleroderma-spectrum pattern and the pattern's composite features are prevalent in patients with DM. Our review further demonstrates a variety of nailfold capillaroscopic findings are found in patients positive for MSAs and MAAs.
Project description:ObjectiveCutaneous inflammation can signal disease in juvenile dermatomyositis (DM) and childhood-onset systemic lupus erythematosus (cSLE), but we do not fully understand cellular mechanisms of cutaneous inflammation. In this study, we used imaging mass cytometry to characterize cutaneous inflammatory cell populations and cell-cell interactions in juvenile DM as compared to cSLE.MethodsWe performed imaging mass cytometry analysis on skin biopsy samples from juvenile DM patients (n = 6) and cSLE patients (n = 4). Tissue slides were processed and incubated with metal-tagged antibodies for CD14, CD15, CD16, CD56, CD68, CD11c, HLA-DR, blood dendritic cell antigen 2, CD20, CD27, CD138, CD4, CD8, E-cadherin, CD31, pan-keratin, and type I collagen. Stained tissue was ablated, and raw data were acquired using the Hyperion imaging system. We utilized the Phenograph unsupervised clustering algorithm to determine cell marker expression and permutation test by histoCAT to perform neighborhood analysis.ResultsWe identified 14 cell populations in juvenile DM and cSLE skin, including CD14+ and CD68+ macrophages, myeloid and plasmacytoid dendritic cells (pDCs), CD4+ and CD8+ T cells, and B cells. Overall, cSLE skin had a higher inflammatory cell infiltrate, with increased CD14+ macrophages, pDCs, and CD8+ T cells and immune cell-immune cell interactions. Juvenile DM skin displayed a stronger innate immune signature, with a higher overall percentage of CD14+ macrophages and prominent endothelial cell-immune cell interaction.ConclusionOur findings identify immune cell population differences, including CD14+ macrophages, pDCs, and CD8+ T cells, in juvenile DM skin compared to cSLE skin, and highlight a predominant innate immune signature and endothelial cell-immune cell interaction in juvenile DM, providing insight into candidate cell populations and interactions to better understand disease-specific pathophysiology.
Project description:Dermatomyositis is a cutaneous and muscular auto-immune condition associated with specific autoantibodies. MDA5 antibody-associated DM has higher mortality. We demonstrate here for the first time using skin microarray analysis that MDA5+ DM is associated with a greater type I interferon skin signature than MDA5- DM, mainly involving the IFN- κ member produced by skin keratinocytes
Project description:ObjectiveDermatomyositis (DM) has been associated with geospatial differences in ultraviolet (UV) radiation, but the role of individual determinants of UV exposure prior to diagnosis is unknown. The objective was to examine the role of those individual determinants.MethodsWe analyzed questionnaire data from 1,350 adults in a US national myositis registry (638 with DM, 422 with polymyositis [PM], and 290 with inclusion body myositis [IBM] diagnosed at ages 18-65 years), examining the likelihood of DM compared with PM and IBM diagnosis, in relation to self-reported sunburn history and job- and hobby-related sun exposures in the year prior to diagnosis. We estimated odds ratios (ORs) and 95% confidence intervals (95% CIs) using logistic regression adjusted for age, skin tone, and sex, to determine the association of individual UV exposures with DM diagnosis. We also evaluated the proportion of DM by maximum daily ambient UV exposure, based on UVB erythemal irradiances for participant residence in the year prior to diagnosis.ResultsDM was associated with sunburn in the year before diagnosis (2 or more sunburns OR 1.77 [95% CI 1.28-2.43] versus PM/IBM; 1 sunburn OR 1.44 [95% CI 1.06-1.95]) and with having elevated job- or hobby-related sun exposure (high exposure OR 1.64 [95% CI 1.08-2.49] or moderate exposure OR 1.35 [95% CI 1.02-1.78] versus low or no exposure). Ambient UV intensity was associated with DM in females (β = 3.97, P = 0.046), but not overall.ConclusionOur findings suggest that high or moderate personal exposure to intense sunlight is associated with developing DM compared with other types of myositis. Prospective research on UV exposure as a modifiable risk factor for DM is warranted.
Project description:Juvenile dermatomyositis (JDM) is a rare, severe autoimmune disease and the most common idiopathic inflammatory myopathy of children. JDM and adult-onset dermatomyositis (DM) have similar clinical, biological and serological features, although these features differ in prevalence between childhood-onset and adult-onset disease, suggesting that age of disease onset may influence pathogenesis. Therefore, a JDM-focused genetic analysis was performed using the largest collection of JDM samples to date. Caucasian JDM samples (n = 952) obtained via international collaboration were genotyped using the Illumina HumanCoreExome chip. Additional non-assayed human leukocyte antigen (HLA) loci and genome-wide single-nucleotide polymorphisms (SNPs) were imputed. HLA-DRB1*03:01 was confirmed as the classical HLA allele most strongly associated with JDM [odds ratio (OR) 1.66; 95% confidence interval (CI) 1.46, 1.89; P = 1.4 × 10-14], with an independent association at HLA-C*02:02 (OR = 1.74; 95% CI 1.42, 2.13, P = 7.13 × 10-8). Analyses of amino acid positions within HLA-DRB1 indicated that the strongest association was at position 37 (omnibus P = 3.3 × 10-19), with suggestive evidence this association was independent of position 74 (omnibus P = 5.1 × 10-5), the position most strongly associated with adult-onset DM. Conditional analyses also suggested that the association at position 37 of HLA-DRB1 was independent of some alleles of the Caucasian HLA 8.1 ancestral haplotype (AH8.1) such as HLA-DQB1*02:01 (OR = 1.62; 95% CI 1.36, 1.93; P = 8.70 × 10-8), but not HLA-DRB1*03:01 (OR = 1.49; 95% CR 1.24, 1.80; P = 2.24 × 10-5). No associations outside the HLA region were identified. Our findings confirm previous associations with AH8.1 and HLA-DRB1*03:01, HLA-C*02:02 and identify a novel association with amino acid position 37 within HLA-DRB1, which may distinguish JDM from adult DM.
Project description:IntroductionDermatomyositis (DM) is an idiopathic inflammatory myopathy. Because of clinical heterogeneity, the metabolite profile of DM patients with different myositis-specific autoantibodies (MSAs) remains elusive. This study aimed to explore the metabolomics characteristics of the serum in DM with different MSAs, low or high disease activity, and interstitial lung disease.MethodsUntargeted metabolomics profiling was performed in the serum of a discovery cohort (n=96) and a validation cohort (n=40), consisting of DM patients with MSAs, low or high disease activity, and/or interstitial lung disease (DM-ILD) compared to age- and gender-matched healthy controls (HCs).ResultsThe lipid profile in DM was found to be abnormal, especially dysregulated glycerophospholipid metabolism and fatty acid oxidation, which might affect the pathogenesis of DM by disrupting the balance of Th17 and Treg. We identified potential biomarkers of DM that can distinguish between low or high disease activity and reflect lung involvement. Two metabolite combinations including pro-leu, FA 14:0;O can distinguish high disease activity DM from low disease activity DM and HCs, and five including indole-3-lactic acid, dihydrosphingosine, SM 32:1;O2, NAE 17:1, and cholic acid can distinguish DM-ILD from DM without ILD (DM-nonILD). DM with different MSAs had unique metabolic characteristics, which can distinguish between MDA5+DM, Jo-1+DM, and TIF1-γ+DM, and from the antibody-negative groups. The sphingosine metabolism has been found to play an important role in MDA5+DM, which was associated with the occurrence of ILD.DiscussionAltered metabolic profiles of dermatomyositis were associated with different myositisspecific autoantibodies, disease activity, and interstitial lung disease, which can help in the early diagnosis, prognosis, or selection of new therapeutic targets for DM.