Ontology highlight
ABSTRACT: Background
The transforming growth factor beta-1 (TGF β-1) cytokine exerts both pro-tumor and anti-tumor effects in carcinogenesis. An increasing body of literature suggests that TGF β-1 signaling outcome is partially dependent on the regulatory targets of downstream receptor-regulated Smad (R-Smad) proteins Smad2 and Smad3. However, the lack of Smad-specific antibodies for ChIP-seq hinders convenient identification of Smad-specific binding sites.Results
In this study, we use localization and affinity purification (LAP) tags to identify Smad-specific binding sites in a cancer cell line. Using ChIP-seq data obtained from LAP-tagged Smad proteins, we develop a convolutional neural network with long-short term memory (CNN-LSTM) as a deep learning approach to classify a pool of Smad-bound sites as being Smad2- or Smad3-bound. Our data showed that this approach is able to accurately classify Smad2- versus Smad3-bound sites. We use our model to dissect the role of each R-Smad in the progression of breast cancer using a previously published dataset.Conclusions
Our results suggests that deep learning approaches can be used to dissect binding site specificity of closely related transcription factors.
SUBMITTER: Ng JWK
PROVIDER: S-EPMC9297549 | biostudies-literature | 2022 Jul
REPOSITORIES: biostudies-literature
BMC genomics 20220720 Suppl 1
<h4>Background</h4>The transforming growth factor beta-1 (TGF β-1) cytokine exerts both pro-tumor and anti-tumor effects in carcinogenesis. An increasing body of literature suggests that TGF β-1 signaling outcome is partially dependent on the regulatory targets of downstream receptor-regulated Smad (R-Smad) proteins Smad2 and Smad3. However, the lack of Smad-specific antibodies for ChIP-seq hinders convenient identification of Smad-specific binding sites.<h4>Results</h4>In this study, we use loc ...[more]