Correction: Composite cell sheet for periodontal regeneration: crosstalk between different types of MSCs in cell sheet facilitates complex periodontal-like tissue regeneration.
Correction: Composite cell sheet for periodontal regeneration: crosstalk between different types of MSCs in cell sheet facilitates complex periodontal-like tissue regeneration.
Project description:Periodontal regeneration is an important part of regenerative medicine, with great clinical significance; however, the effects of nanotopography on the functions of periodontal ligament (PDL) stem cells (PDLSCs) and on PDLSC sheet based periodontal regeneration have never been explored. Titania nanotubes (NTs) layered on titanium (Ti) provide a good platform to study this. In the current study, the influence of NTs of different tube size on the functions of PDLSCs was observed. Afterward, an ectopic implantation model using a Ti/cell sheets/hydroxyapatite (HA) complex was applied to study the effect of the NTs on cell sheet based periodontal regeneration. The NTs were able to enhance the initial PDLSC adhesion and spread, as well as collagen secretion. With the Ti/cell sheets/HA complex model, it was demonstrated that the PDLSC sheets were capable of regenerating the PDL tissue, when combined with bone marrow mesenchymal stem cell (BMSC) sheets and HA, without the need for extra soluble chemical cues. Simultaneously, the NTs improved the periodontal regeneration result of the ectopically implanted Ti/cell sheets/HA complex, giving rise to functionally aligned collagen fiber bundles. Specifically, much denser collagen fibers, with abundant blood vessels as well as cementum-like tissue on the Ti surface, which well-resembled the structure of natural PDL, were observed in the NT5 and NT10 sample groups. Our study provides the first evidence that the nanotopographical cues obviously influence the functions of PDLSCs and improve the PDLSC sheet based periodontal regeneration size dependently, which provides new insight to the periodontal regeneration. The Ti/cell sheets/HA complex may constitute a good model to predict the effect of biomaterials on periodontal regeneration.
Project description:Human periodontal ligament stem cells (hPDLSCs) transplantation represents a promising approach for periodontal regeneration; however, the cell source is limited due to the invasive procedure required for cell isolation. As human umbilical cord mesenchymal stem cells (hUCMSCs) can be harvested inexpensively and inexhaustibly, here we evaluated the regenerative potentials of hUCMSCs as compared with hPDLSCs to determine whether hUCMSCs could be used as new cell sources for periodontal regeneration. Methods The characteristics of hUCMSCs, including multi-differentiation ability and anti-inflammatory capability, were determined by comparison with hPDLSCs. We constructed cell aggregates (CA) using hUCMSCs and hPDLSCs respectively. Then hPDLSCs-CA and hUCMSCs-CA were combined with β-tricalcium phosphate bioceramic (β-TCP) respectively and their regenerative potentials were determined in a rat inflammatory periodontal defect model. Results hPDLSCs showed higher osteogenic differentiation potentials than hUCMSCs. Meanwhile, hUCMSCs showed higher extracellular matrix secretion and anti-inflammatory abilities than hPDLSCs. Similar to hPDLSCs, hUCMSCs were able to contribute to regeneration of both soft and hard periodontal tissues under inflammatory periodontitis condition. There were more newly formed bone and periodontal ligaments in hPDLSCs and hUCMSCs groups than in non-cell treated group. Moreover, no significant differences of regenerative promoting effects between hPDLSCs and hUCMSCs were found. Conclusion: hUCMSCs generated similar promoting effects on periodontal regeneration compared with hPDLSCs, and can be used as new cell sources for periodontal regeneration.
Project description:Periodontal tissue is a distinctive tissue structure composed three-dimensionally of cementum, periodontal ligament (PDL) and alveolar bone. Severe periodontal diseases cause fundamental problems for oral function and general health, and conventional dental treatments are insufficient for healing to healthy periodontal tissue. Cell sheet technology has been used in many tissue regenerations, including periodontal tissue, to transplant appropriate stem/progenitor cells for tissue regeneration of a target site as a uniform tissue. However, it is still difficult to construct a three-dimensional structure of complex tissue composed of multiple types of cells, and the transplantation of a single cell sheet cannot sufficiently regenerate a large-scale tissue injury. Here, we fabricated a three-dimensional complex cell sheet composed of a bone-ligament structure by layering PDL cells and osteoblast-like cells on a temperature responsive culture dish. Following ectopic and orthotopic transplantation, only the complex cell sheet group was demonstrated to anatomically regenerate the bone-ligament structure along with the functional connection of PDL-like fibers to the tooth root and alveolar bone. This study represents successful three-dimensional tissue regeneration of a large-scale tissue injury using a bioengineered tissue designed to simulate the anatomical structure.
Project description:Different approaches to develop engineered scaffolds for periodontal tissues regeneration have been proposed. In this review, innovations in stem cell technology and scaffolds engineering focused primarily on Periodontal Ligament (PDL) regeneration are discussed and analyzed based on results from pre-clinical in vivo studies and clinical trials. Most of those developments include the use of polymeric materials with different patterning and surface nanotopography and printing of complex and sophisticated multiphasic composite scaffolds with different compartments to accomodate for the different periodontal tissues' architecture. Despite the increased effort in producing these scaffolds and their undoubtable efficiency to guide and support tissue regeneration, appropriate source of cells is also needed to provide new tissue formation and various biological and mechanochemical cues from the Extraccellular Matrix (ECM) to provide biophysical stimuli for cell growth and differentiation. Cell sheet engineering is a novel promising technique that allows obtaining cells in a sheet format while preserving ECM components. The right combination of those factors has not been discovered yet and efforts are still needed to ameliorate regenerative outcomes towards the functional organisation of the developed tissues.
Project description:Periodontal disease is characterized by the destruction of tooth supporting tissues. Regeneration of periodontal tissues using ex vivo expanded cells has been introduced and studied, although appropriate methodology has not yet been established. We developed a novel cell transplant method for periodontal regeneration using periodontal ligament stem cell (PDLSC)-transferred amniotic membrane (PDLSC-amnion). The aim of this study was to investigate the regenerative potential of PDLSC-amnion in a rat periodontal defect model. Cultured PDLSCs were transferred onto amniotic membranes using a glass substrate treated with polyethylene glycol and photolithography. The properties of PDLSCs were investigated by flow cytometry and in vitro differentiation. PDLSC-amnion was transplanted into surgically created periodontal defects in rat maxillary molars. Periodontal regeneration was evaluated by microcomputed tomography (micro-CT) and histological analysis. PDLSCs showed mesenchymal stem cell-like characteristics such as cell surface marker expression (CD90, CD44, CD73, CD105, CD146, and STRO-1) and trilineage differentiation ability (i.e., into osteoblasts, adipocytes, and chondrocytes). PDLSC-amnion exhibited a single layer of PDLSCs on the amniotic membrane and stability of the sheet even with movement and deformation caused by surgical instruments. We observed that the PDLSC-amnion enhanced periodontal tissue regeneration as determined by micro-CT and histology by 4 weeks after transplantation. These data suggest that PDLSC-amnion has therapeutic potential as a novel cell-based regenerative periodontal therapy.
Project description:Accelerated marrow adipogenesis has been associated with ageing and osteoporosis and is thought to be because of an imbalance between adipogenic and osteogenic differentiation of mesenchymal stem cell (MSCs). We have previously found that lysyl oxidase (Lox) inhibition disrupts BMP4-induced adipocytic lineage commitment and differentiation of MSCs. In this study, we found that lox inhibition dramatically up-regulates BMP4-induced expression of CCAAT/enhancer binding protein (C/EBP) homologous protein 10 (CHOP-10), which then promotes BMP4-induced osteogenesis of MSCs both in vitro and in vivo. Specifically, Lox inhibition or CHOP-10 up-regulation activated Wnt/β-catenin signalling to enhance BMP4-induced osteogenesis, with pro-adipogenic p38 MAPK and Smad signalling suppressed. Together, we demonstrate that Lox/CHOP-10 crosstalk regulates BMP4-induced osteogenic and adipogenic fate determination of MSCs, presenting a promising therapeutic target for osteoporosis and other bone diseases.
Project description:Background/purposeNicotine is a widely known addictive and toxic substance in cigarette that exacerbates periodontitis. However, its deleterious effects on dental stem cells and subsequent implications in tissue regeneration remain unclear. This study aimed to explore the effects of nicotine on the regenerative capacity of human periodontal ligament stem cells (hPDLSCs) based on transcriptomics and proteomics, and determined possible targeted genes associated with smoking-related periodontitis.Materials and methodshPDLSCs were treated with different concentrations of nicotine ranging from 10-3 to 10-8 M. Transcriptomics and proteomics were performed and confirmed employing Western blot, 5-ethynyl-2'-deoxyuridine (EdU), and alkaline phosphatase (ALP) staining. A ligature-induced periodontitis mouse model was established and administrated with nicotine (16.2 μg/10 μL) via gingival sulcus. The bone resorption was assessed by micro-computed tomography and histological staining. Key genes were identified using multi-omics analysis with verifications in hPDLSCs and human periodontal tissues.ResultsBased on enrichments analysis, nicotine-treated hPDLSCs exhibited decreased proliferation and differentiation abilities. Local administration of nicotine in mouse model significantly aggravated bone resorption and undermined periodontal tissue regeneration by inhibiting the endogenous dental stem cells regenerative ability. HMGCS1, GPNMB, and CHRNA7 were hub-genes according to the network analysis and corelated with proliferation and differentiation capabilities, which were also verified in both cells and tissues.ConclusionOur study investigated the destructive effects of nicotine on the regeneration of periodontal tissues from aspects of in vitro and in vivo with the supporting information from both transcriptome and proteome, providing novel targets into the molecular mechanisms of smoking-related periodontitis.
Project description:The recurrence of cholesteatoma after surgical treatment often occurs as a result of poor mucosal regeneration in the middle ear cavity and mastoid cavity and changes, such as granulation tissue formation, which impair gas exchange in the middle ear cavity. Conventional tympanoplasty often results in a lack of mucosal regeneration in the resected area of the mastoid cavity. In particular, mucosal regeneration in a poorly pneumatized mastoid cavity is extremely difficult. If the middle ear mucosa can be preserved or rapid postoperative regeneration of mucosa on the exposed bone surface can be achieved after middle ear surgery, the results of surgical treatment for otitis media, including cholesteatoma, can potentially be improved and the physiological function of the middle ear can be recovered. To overcome these limitations, we developed a novel treatment method combining tympanoplasty and autologous nasal mucosal epithelial cell sheet transplantation for postoperative regeneration of the middle ear mucosa. In clinical research, we endoscopically removed an approximately 10 × 10 mm2 piece of nasal mucosal tissue. Tissue-engineered autologous nasal mucosal epithelial cell sheets were fabricated by culturing the harvested cells in an aseptic environment in a good manufacturing practice-compliant cell processing facility. The cultivated cell sheets were transplanted, during tympanoplasty, onto the exposed bony surface of the attic of the tympanic and mastoid cavities where the mucosa had been lost. We performed this procedure on four patients with middle ear cholesteatoma and one patient with adhesive otitis media. All patients showed favorable postoperative course with no adverse events or complications and the patients' hearing ability post-transplantation remained good.
Project description:BackgroundThe immunogenicity of allogeneic mesenchymal stem cells (MSCs) is significantly enhanced after transplantation or differentiation, and these cells can be recognized and cleared by recipient immune cells. Graft rejection has become a major obstacle to improving the therapeutic effect of allogeneic MSCs or, after their differentiation, transplantation in the treatment of diabetes and other diseases. Solving this problem is helpful for prolonging the time that cells play a role in the recipient body and for significantly improving the clinical therapeutic effect.MethodsIn this study, canine adipose-derived mesenchymal stem cells (ADSCs) were used as seed cells, and gene editing technology was used to knock out the B2M gene in these cells and cooperate with the overexpression of the PD-L1 gene. Gene-edited ADSCs (GeADSCs), whose biological characteristics and safety are not different from those of normal canine ADSCs, have been obtained.ResultsThe immunogenicity of GeADSCs is reduced, the immune escape ability of GeADSCs is enhanced, and GeADSCs can remain in the body for a longer time. Using the optimized induction program, the efficiency of the differentiation of GeADSCs into new islet β-cells was increased, and the maturity of the new islet β-cells was increased. The immunogenicity of new islet β-cells decreased, and their immune escape ability was enhanced after the cells were transplanted into diabetic dogs (the graft site was prevascularized by the implantation of a scaffold to form a vascularized pouch). The number of infiltrating immune cells and the content of immune factors were decreased at the graft site.ConclusionsNew islet β-cell transplantation, which has low immunogenicity, can reverse diabetes in dogs, and the therapeutic effect of cell transplantation is significantly enhanced. This study provides a new method for prolonging the survival and functional time of cells in transplant recipients and significantly improving the clinical therapeutic effect.
Project description:Periodontal regeneration study. Periodontitis is a common chronic inflammatory disease which may lead to tooth loss. The ultimate goal of periodontal therapy is complete regeneration of the tissues lost as a result of periodontitis. However, most regenerative clinical procedures are unpredictable, largely because there is a lack of understanding of how the various tissues comprising the periodontium (gingival epithelium, gingival connective tissue, periodontal ligament, aveolar bone and cementum) interact during the regenerative process. The aim of this study was to investigate the molecular mechanisms that are involved in periodontal regeneration. For this purpose, paired sets of gingival, ligament and regenerating cells were isolated from patients that have been treated for periodontitis via a regenerative surgical procedure. A microarray analysis using the Hu133A Affymetrix arrays was used to identify the genes and pathways that were characteristic of the three different tissues. We have identified over 500 transcripts in global comparison and intrapatient comparisons that were differentially expressed between ligament and gingival samples, and approximately 30 transcripts that characterized the regenerating cell population. By using a functional classification based on Gene Ontology we were able to group the transcripts into 12 groups. Proteases/Protease inhibitors were differentially expressed between the ligament and gingiva highlighting high ECM remodelling activity by gingival cells. On the other hand, ligament cells were shown to have increased protein synthesis by increasing their nucleolar and ribosomal gene complement. We were able to identify 57 various DNA binding proteins, among them were some well characterised transcription factors, transcriptional regulators, including DNA polymerases and transcriptional co-activators. Furthermore, we have also identified changes in expression of their targets in the two tissues. This is the first study to characterise the gene expression profile of periodontal regenerating cells and allowed us to gain valuable insights into the cellular and molecular mechanisms that occur during the regenerative process. We have identified signalling pathways which are consistent with clinical observations of the regenerative properties of gingival and periodontal ligament cells. These pathways provide candidate targets that can be manipulated in order to achieve a superior regenerative clinical outcome. Keywords: other