Project description:Osteosarcoma, the most common malignant bone tumor with recurring disease or lung metastases, has become one of the leading causes of death in humans. In the current study, we made an investigation on the anticancer effect of glaucocalyxin A, a bioactive ent-kauranoid diterpenoid isolated from Rabdosia japonica var., and unraveled the underlying mechanisms. Here, we found that Glaucocalyxin A inhibited the cell viability of numerous osteosarcoma cells. Our results showed that Glaucocalyxin A exerted the pro-apoptotic effect on human osteosarcoma cells, MG-63 and HOS cells. Glaucocalyxin A induced apoptosis by mitochondrial apoptotic pathway through several steps including increasing the Bax/Bcl-2 ratio, triggering the intracellular reactive oxygen species (ROS) generation, reducing mitochondrial membrane potential (MMP), and inducing cleavage of caspase-9 and caspase-3. We demonstrated that Glaucocalyxin A induced apoptosis via inhibiting Five-zinc finger Glis 1 (GLI1) activation by overexpression and knockdown of GLI1 in vitro. We also found that Glaucocalyxin A inhibited GLI1 activation via regulating phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) signaling pathway. We further confirmed our findings by using PI3K activator and inhibitor to verify the inhibitory effect of Glaucocalyxin A on PI3K/Akt/GLI1 pathway. Moreover, our in vivo study revealed that glaucocalyxin A possessed a remarkable antitumor effect with no toxicity in the xenograft model inoculated with HOS tumor through the same mechanisms as in vitro. In conclusion, our results suggested that Glaucocalyxin A induced apoptosis in osteosarcoma by inhibiting nuclear translocation of GLI1 via regulating PI3K/Akt signaling pathway. Thus, Glaucocalyxin A might be a potential candidate for human osteosarcoma in the future.
Project description:A new series of acrylic acid and acrylate ester derivatives as modified analogs of tubulin polymerization inhibitors were designed and synthesized. The antiproliferative activity of the constructed molecules was investigated against MCF-7 breast carcinoma cells using CA-4 as positive molecule. Methyl acrylate ester 6e emerged as the most potent cytotoxic agent against MCF-7 cells, with an IC50 value of 2.57 ± 0.16 μM. Also, methyl acrylate ester molecule 6e showed good β-tubulin polymerization inhibition activity. Cellular cycle analysis showed that compound 6e can arrest MCF-7 cells at the G2/M phase. In addition, this compound produced a significant increase in apoptotic power as compared to control untreated MCF-7 cells. Furthermore, the effect of acrylate ester 6e on the gene expression levels of p53, Bax and Bcl-2 was investigated. This molecule increased the expression levels of both p53 and Bax, and decreased the gene expression level of Bcl-2 as compared to control untreated MCF-7 carcinoma cells.
Project description:Translation of mRNA is one of the processes adopted by cancer cells to maintain survival via phosphorylated (p)-eIF4E overexpression. Once p-eIF4E binds to the cap structure of mRNA, it advocates a nonstop translation process. In this regard, 15 new-based GMP analogs were synthesized to target eIF4E and restrain its binding to cap mRNA. The compounds were tested against three types of cancer cell lines: Caco-2, HepG-2, MCF-7, and normal kidney cells (Vero cells). Most of the compounds showed high potency against breast cancer cells (MCF-7), characterized by the highest cancer type for overexpression of p-eIF4E. Compound 4b was found to be the most active against three cell lines, colon (Caco-2), hepatic (HepG-2), and breast (MCF-7), with positive IC50 values of 31.40, 27.15, and 21.71 μM, respectively. Then, chitosan-coated niosomes loaded with compound 4b (Cs/4b-NSs) were developed (as kinetically enhanced molecules) to improve the anticancer effects further. The prepared Cs/4b-NSs showed pronounced cytotoxicity compared to the free 4b against Caco2, Hepg2, and MCF-7 with IC50 values of 16.15, 26.66, and 6.90 μM, respectively. Then, the expression of both the phosphorylated and nonphosphorylated western blot techniques was conducted on MCF-7 cells treated with the most active compounds (based on the obtained IC50 values) to determine the total protein expression of both eIF4E and p-eIF4e. Interestingly, the selected most active compounds displayed 35.8-40.7% inhibition of p-eIF4E expression when evaluated on MCF-7 compared to Ribavirin (positive control). CS/4b-NSs showed the best inhibition (40.7%). The findings of the present joint in silico molecular docking, simulation dynamic studies, and experimental investigation suggest the potential use of niosomal nanovesicles as a promising nanocarrier for the targeted delivery of the newly synthesized compound 4b to eukaryotic initiation factor 4E. These outcomes support the possible use of Cs/4b-NSs in targeted cancer therapy.
Project description:A group of novel trimethoxyphenyl (TMP)-based analogues were synthesized by varying the azalactone ring of 2-(3,4-dimethoxyphenyl)-4-(3,4,5-trimethoxybenzylidene)oxazolone 1 and characterized using NMR spectral data as well as elemental microanalyses. All synthesized compounds were screened for their cytotoxic activity utilizing the hepatocellular carcinoma (HepG2) cell line. Compounds 9, 10 and 11 exhibited good cytotoxic potency with IC50 values ranging from 1.38 to 3.21 μM compared to podophyllotoxin (podo) as a reference compound. In addition, compounds 9, 10 and 11 exhibited potent inhibition of β-tubulin polymerization. DNA flow cytometry analysis of compound 9 shows cell cycle disturbance at the G2/M phase and a significant increase in Annexin-V-positive cells compared with the untreated control. Compound 9 was further studied regarding its apoptotic potential in HepG2 cells; it decreased the level of MMP and Bcl-2 as well as boosted the level of p53 and Bax compared with the control HepG2 cells.
Project description:The present work aimed to assess the potential effect of sericin/propolis/fluorouracil nanoformula against colorectal cancer (CRC) (the fourth most common cause of cancer-related mortalities). A novel anti-cancerous formula of the synthesized sericin/propolis nanoparticles was developed and tested both in vitro (using Caco-2 cell line) and in vivo (in experimentally induced colorectal cancer animal models). The combination index of the prepared nanoformula proved that the combination between sericin/propolis nanoparticles and 5-fluorouracil demonstrated the highest synergistic effect (0.86), with dose reduction index (DRI) of the chemotherapeutic drug reaching 1.49. The mechanism of action of the prepared nanoformula revealed that it acts through the inhibition of the PI3K/AKT/mTOR signaling pathway and consequently inhibiting cancerous cells proliferation. Treatment and prophylactic studies of both sericin and propolis showed increased TBARS (Thiobarbituric Acid Reactive Substance) formation, downregulated BCL2 (B-cell lymphoma 2) and activated BAX, Caspase 9 and Caspase 3 expression. The prepared nanoformula decreased the ROS (Reactive Oxygen Species) production in vivo owing to PI3K/AKT/mTOR pathway inhibition and FOXO-1 (Forkhead Box O1) activation that resulted in autophagy/apoptosis processes stimulation. The potent anticancer effect of the prepared nanoformula was further emphasized through the in vivo histopathological studies of experimentally induced tumors. The newly formulated sericin/propolis/fluorouracil nanoparticles exhibited clear-cut cytotoxic effects toward tumor cells with provided evidence for the prophylactic effect.
Project description:ObjectiveTo investigate the therapeutic effect and mechanism of sivelestat sodium on acute lung injury (AIL).MethodsA rat model for ALI/acute respiratory distress syndrome (ALI/ARDS) was established. Pathological examination of lung tissue was conducted to assess lung injury. Blood gas in the arteries was measured using a blood analyzer. Changes in PaO2, PaO2/FiO2, and lung wet/dry (W/D) weight ratio were carefully compared. ELISA assay was conducted to estimate cell adhesion and inflammation response. Finally, real-time reverse transcription polymerase chain reaction and western blotting assay was used to determine the activation of PI3K/AKT/mTOR pathway.ResultsARDS in vivo model was successfully constructed by LPS injection. Compared with the sham group, PaO2 and PaO2/FiO2 were significantly lower in the vehicle group, while the lung W/D ratio, the lung injury score, NE, VCAM-1, IL-8 andTNF-αwere significantly increased. After treatment with different doses of sivelestat sodium, we found PaO2, PaO2/FiO2 were prominently increased, while the lung W/D ratio, the lung injury score, NE, VCAM-1, IL-8, TNF-α levels were decreased in the dose-dependent manner. Meanwhile, compared with the vehicle group, the expression levels of Bax, PI3K, Akt and mTOR were significantly lower, and the expression of Bcl-2 was significantly higher after injection with sivelestat sodium.ConclusionSivelestat sodium has an interventional effect on ALI in sepsis by inhibiting the PI3K/AKT/mTOR signalling pathway.
Project description:Complex illnesses, such as cancer, are often caused by many disorders, gene mutations, or pathways. Biological pathways play a significant part in the development of these diseases. Multi-target directed ligands (MTDLs) have been used by medicinal chemists recently in an effort to find single molecules that can affect many targets concurrently. In this work, several chalcones containing the ligustrazine moiety were synthesized and tested for their in vitro anticancer activity and several cancer markers, including EGFR, BRAFV600E, c-Met, and tubulin polymerization, in order to uncover multitarget bioactive compounds. In assays using multiple cancer cell lines, the majority of the compounds examined showed strong anticancer activity against them. To synthesize oximes, all of the chalcones were used as precursors. The IC50 values of two compounds (11g and 11e) were found to be 0.87, 0.28, 2.43, 1.04 μM and 11d, 1.47, 0.79, 3.8, 1.63 μM respectively, against A-375, MCF-7, HT-29 and H-460 cell lines. These IC50 values revealed an excellent antiproliferative activity compared to those of the positive control foretinib, (IC50 = 1.9, 1.15, 3.97, and 2.86 μM). Careful examination of their structure and configuration revealed that both compounds had an oxime functional group with z configuration, in place of carbonyl functional group, along with a 2-phenyl thiophenyl moiety with or without a bromo group at position-5. The possible binding pattern was implied by docking simulation, inferring the possibility of introducing interactions with the nearby tubulin chain. Since the novel structural trial has been conducted with a detailed structure activity relationship discussion, this work might stimulate new ideas in further modification of multitarget anti-cancer agents and therapeutic approaches.
Project description:Ecdysterone (Ecd), an active ingredient in trianthema, has a strong anti-inflammatory effect. This study aimed to explore the potential mechanism by which Ecd improves atherosclerosis (AS). Here, we systematically investigated the mechanism of Ecd in human umbilical vein endothelial cells (HUVECs) treated with oxidised low-density lipoprotein (ox-LDL). In ox-LDL-treated HUVECs, Ecd promoted HUVEC viability as well as inhibited ferroptosis and the secretion of inflammatory factors (TNF-α, IL-6 and IL-1β). In addition, Ecd inhibited the expression of neutrophil cytoplasmic factor 2 (NCF2) and triggered the PI3K/AKT/Nrf2 signalling pathway, thereby alleviating the increase of ferroptosis in ox-LDL-treated HUVECs. More importantly, we constructed an AS mouse model by feeding ApoE-/- mice with a high-fat diet and found that Ecd treatment alleviated vasculopathy and arterial ferroptosis and inhibited the secretion of inflammatory factors in vivo, which could be reversed by overexpression of NCF2. Overall, this study showed that the protective effect of Ecd on AS is mainly achieved by inhibiting NCF2 and activating the PI3K/Akt/Nrf2 pathway to inhibit ferroptosis. Therefore, Ecd may be an effective drug to improve AS by inhibiting ferroptosis-induced inflammation.
Project description:As important cancer therapeutic agents, macrocyclic peptides have recently drawn great attention, mainly because they are synthetically accessible and have lower toxicity towards normal cells. In the present work, we synthesized newly macrocyclic pyridoheptapeptide derivatives. The synthesized derivatives were characterized using standard chemical and spectroscopic analytical techniques, and their anticancer activities against human breast and hepatocellular cancer cells were investigated. Results showed that compounds 1a and 1b were the most effective against hepatocellular (HepG2) and breast (MCF-7) cancer cell lines, respectively.