Unknown

Dataset Information

0

Suppression of xenogeneic innate immune response by a membrane-type human surfactant protein-A.


ABSTRACT: Macrophage-mediated xenogeneic rejection is a major immunological obstacle. We recently reported that membrane-type surfactant protein-D (SP-D) on swine endothelial cells (SECs) suppressed macrophage-mediated rejection. Similar to SP-D, the carbohydrate recognition domain of surfactant protein-A (SP-A) can induce inhibitory signals in effector cells. The present study aimed to examine the suppressive effect of SP-A on macrophage-mediated xenogeneic rejection. Naive SECs and SPA-transfected SECs (SEC/SP-A) were co-cultured with THP-1 cells and cytotoxicity was evaluated. To investigate the effect of SP-A on phagocytosis, human macrophages were co-cultured with SEC or SEC/SP-A, and the extent of phagocytosis and production of reactive oxygen species were assessed via flow cytometry. The mRNA expression levels of inflammatory cytokines in macrophages were determined using reverse transcription-PCR. Additionally, the effects of THP-1-Lucia NF-κB cells on transcription factors were evaluated. The cytotoxicity and phagocytosis of SEC/SP-A were significantly decreased compared with those of naive SEC. Furthermore, the co-culture of human macrophages with SEC/SP-A decreased reactive oxygen species production, and the mRNA expression levels of TNFα were decreased in macrophages, whereas those of IL-10 were increased. In addition, NF-κB transcription was decreased in SEC/SP-A compared with that in SEC. In conclusion, the ectopic expression of human SP-A in porcine cells represents an attractive method for suppressing macrophage-mediated cytotoxicity.

SUBMITTER: Toyama C 

PROVIDER: S-EPMC9353545 | biostudies-literature | 2022 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Suppression of xenogeneic innate immune response by a membrane-type human surfactant protein-A.

Toyama Chiyoshi C   Maeda Akira A   Kogata Shuhei S   Yamamoto Riho R   Masahata Kazunori K   Ueno Takehisa T   Kamiyama Masafumi M   Tazuke Yuko Y   Eguchi Hiroshi H   Okuyama Hiroomi H   Miyagawa Shuji S  

Experimental and therapeutic medicine 20220726 3


Macrophage-mediated xenogeneic rejection is a major immunological obstacle. We recently reported that membrane-type surfactant protein-D (SP-D) on swine endothelial cells (SECs) suppressed macrophage-mediated rejection. Similar to SP-D, the carbohydrate recognition domain of surfactant protein-A (SP-A) can induce inhibitory signals in effector cells. The present study aimed to examine the suppressive effect of SP-A on macrophage-mediated xenogeneic rejection. Naive SECs and SPA-transfected SECs  ...[more]

Similar Datasets

| S-EPMC4832344 | biostudies-other
| S-EPMC1488972 | biostudies-literature
| S-EPMC2859506 | biostudies-literature
| S-EPMC3175576 | biostudies-literature
| S-EPMC11458135 | biostudies-literature
| S-EPMC3754097 | biostudies-literature
| S-EPMC2958248 | biostudies-literature
| S-EPMC3950292 | biostudies-literature
| S-EPMC8557868 | biostudies-literature
| S-EPMC5434867 | biostudies-literature