Unknown

Dataset Information

0

Polymorphic Ga2S3 nanowires: phase-controlled growth and crystal structure calculations.


ABSTRACT: The polymorphism of nanostructures is of paramount importance for many promising applications in high-performance nanodevices. We report the chemical vapor deposition synthesis of Ga2S3 nanowires (NWs) that show the consecutive phase transitions of monoclinic (M) → hexagonal (H) → wurtzite (W) → zinc blende (C) when lowering the growth temperature from 850 to 600 °C. At the highest temperature, single-crystalline NWs were grown in the thermodynamically stable M phase. Two types of H phase exhibited 1.8 nm periodic superlattice structures owing to the distinctively ordered Ga sites. They consisted of three rotational variants of the M phase along the growth direction ([001]M = [0001]H/W) but with different sequences in the variants. The phases shared the same crystallographic axis within the NWs, producing novel core-shell structures to illustrate the phase evolution. The relative stabilities of these phases were predicted using density functional theory calculations, and the results support the successive phase evolution. Photodetector devices based on the p-type M and H phase Ga2S3 NWs showed excellent UV photoresponse performance.

SUBMITTER: Park K 

PROVIDER: S-EPMC9419741 | biostudies-literature | 2022 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Polymorphic Ga<sub>2</sub>S<sub>3</sub> nanowires: phase-controlled growth and crystal structure calculations.

Park Kidong K   Kim Doyeon D   Debela Tekalign Terfa TT   Boujnah Mourad M   Zewdie Getasew Mulualem GM   Seo Jaemin J   Kwon Ik Seon IS   Kwak In Hye IH   Jung Minkyung M   Park Jeunghee J   Kang Hong Seok HS  

Nanoscale advances 20220701 15


The polymorphism of nanostructures is of paramount importance for many promising applications in high-performance nanodevices. We report the chemical vapor deposition synthesis of Ga<sub>2</sub>S<sub>3</sub> nanowires (NWs) that show the consecutive phase transitions of monoclinic (M) → hexagonal (H) → wurtzite (W) → zinc blende (C) when lowering the growth temperature from 850 to 600 °C. At the highest temperature, single-crystalline NWs were grown in the thermodynamically stable M phase. Two t  ...[more]

Similar Datasets

| S-EPMC10660439 | biostudies-literature
| S-EPMC5347076 | biostudies-literature
| S-EPMC9417278 | biostudies-literature
| S-EPMC10825910 | biostudies-literature
| S-EPMC9419326 | biostudies-literature
| S-EPMC9060963 | biostudies-literature
| S-EPMC10666250 | biostudies-literature
| S-EPMC9064156 | biostudies-literature
| S-EPMC4876924 | biostudies-literature
| S-EPMC4477229 | biostudies-literature