Project description:Measurements have been made of the tissue content of phosphoribosyl pyrophosphate (PPRibP) and of a range of metabolic intermediates involved in the energy charge of the cell, the glycolytic and pentose phosphate pathways, and of the activity of the enzymes of the pentose phosphate pathway and of PPRibP synthetase (EC 2.7.6.1) in the livers of normal, diabetic, insulin-treated diabetic and starved rats and in livers of rats previously starved and then re-fed with high-fat or high-carbohydrate diets. Diabetes, starvation and high-fat diet all caused a fall in the hepatic PPRibP content, whereas insulin treatment and high-carbohydrate diet raised the tissue content. A positive correlation was shown between the PPRibP content and ATP, energy charge and the cytosolic [NAD+]/[NADH] quotient. A positive association between the PPRibP content and the flux of glucose through the pentose phosphate pathway and the synthesis of ribose 5-phosphate via the oxidative enzymes of that pathway, including ribose-5-phosphate isomerase (EC 5.3.1.6), was also observed. A negative correlation was found between the ADP, AMP and Pi contents, and no correlation existed between PPRibP content and the enzymes of the non-oxidative branch of the pentose phosphate pathway. There was no correlation between hepatic PPRibP content and the activity of PPRibP synthetase measured in vitro. These results are considered in relation to the control of PPRibP synthetase in the liver in vivo.
Project description:BackgroundFermentation of xylose to ethanol has been achieved in S. cerevisiae by genetic engineering. Xylose utilization is however slow compared to glucose, and during anaerobic conditions addition of glucose has been necessary for cellular growth. In the current study, the xylose-utilizing strain TMB 3415 was employed to investigate differences between anaerobic utilization of glucose and xylose. This strain carried a xylose reductase (XYL1 K270R) engineered for increased NADH utilization and was capable of sustained anaerobic growth on xylose as sole carbon source. Metabolic and transcriptional characterization could thus for the first time be performed without addition of a co-substrate or oxygen.ResultsAnalysis of metabolic fluxes showed that although the specific ethanol productivity was an order of magnitude lower on xylose than on glucose, product yields were similar for the two substrates. In addition, transcription analysis identified clear regulatory differences between glucose and xylose. Respiro-fermentative metabolism on glucose during aerobic conditions caused repression of cellular respiration, while metabolism on xylose under the same conditions was fully respiratory. During anaerobic conditions, xylose repressed respiratory pathways, although notably more weakly than glucose. It was also observed that anaerobic xylose growth caused up-regulation of the oxidative pentose phosphate pathway and gluconeogenesis, which may be driven by an increased demand for NADPH during anaerobic xylose catabolism.ConclusionCo-factor imbalance in the initial two steps of xylose utilization may reduce ethanol productivity by increasing the need for NADP+ reduction and consequently increase reverse flux in glycolysis.
Project description:NADPH donates high energy electrons for antioxidant defense and reductive biosynthesis. Cytosolic NADP is recycled to NADPH by the oxidative pentose phosphate pathway (oxPPP), malic enzyme 1 (ME1) and isocitrate dehydrogenase 1 (IDH1). Here we show that any one of these routes can support cell growth, but the oxPPP is uniquely required to maintain a normal NADPH/NADP ratio, mammalian dihydrofolate reductase (DHFR) activity and folate metabolism. These findings are based on CRISPR deletions of glucose-6-phosphate dehydrogenase (G6PD, the committed oxPPP enzyme), ME1, IDH1, and combinations thereof in HCT116 colon cancer cells. Loss of G6PD results in high NADP, which induces compensatory increases in ME1 and IDH1 flux. But the high NADP inhibits dihydrofolate reductase (DHFR), resulting in impaired folate-mediated biosynthesis, which is reversed by recombinant expression of E. coli DHFR. Across different cancer cell lines, G6PD deletion produced consistent changes in folate-related metabolites, suggesting a general requirement for the oxPPP to support folate metabolism.
Project description:Recurrent tumors originate from cancer stem cells (CSCs) that survive conventional treatments. CSCs consist of heterogeneous subpopulations that display distinct sensitivity to anticancer drugs. Such a heterogeneity presents a significant challenge in preventing tumor recurrence. In the current study, we observed that quiescent CUB-domain-containing protein 1 (CDCP1)+ CSCs are enriched after chemotherapy in mutant Kirsten rat sarcoma viral oncogene homolog (Kras) colorectal carcinomas (CRCs) and serve as a reservoir for recurrence. Mechanistically, glucose catabolism in CDCP1+ CSCs is routed to the oxidative pentose phosphate pathway (PPP); multiple cycling of carbon backbones in the oxidative PPP potentially maximizes NADPH reduction to counteract chemotherapy-induced reactive oxygen species (ROS) formation, thereby allowing CDCP1+ CSCs to survive chemotherapeutic attack. This is dependent on silent mating type information regulation 2 homolog 5 (Sirt5)-mediated inhibition of the glycolytic enzyme triosephosphate isomerase (TPI) through demalonylation of Lys56. Blocking demalonylation of TPI at Lys56 increases chemosensitivity of CDCP1+ CSCSs and delays recurrence of mutant Kras CRCs in vivo. These findings pinpoint a new therapeutic approach for combating mutant Kras CRCs.
Project description:Resistance development to one chemotherapeutic reagent leads frequently to acquired tolerance to other compounds, limiting the therapeutic options for cancer treatment. Herein, we find that overexpression of Rac1 is associated with multi-drug resistance to the neoadjuvant chemotherapy (NAC). Mechanistically, Rac1 activates aldolase A and ERK signaling which up-regulates glycolysis and especially the non-oxidative pentose phosphate pathway (PPP). This leads to increased nucleotides metabolism which protects breast cancer cells from chemotherapeutic-induced DNA damage. To translate this finding, we develop endosomal pH-responsive nanoparticles (NPs) which deliver Rac1-targeting siRNA together with cisplatin and effectively reverses NAC-chemoresistance in PDXs from NAC-resistant breast cancer patients. Altogether, our findings demonstrate that targeting Rac1 is a potential strategy to overcome acquired chemoresistance in breast cancer.
Project description:Bone lengthening and fracture repair depend on the anabolic properties of chondrocytes that function in an avascular milieu. The limited supply of oxygen and nutrients calls into question how biosynthesis and redox homeostasis are guaranteed. Here we show that glucose metabolism by the pentose phosphate pathway (PPP) is essential for endochondral ossification. Loss of glucose-6-phosphate dehydrogenase in chondrocytes does not affect cell proliferation because reversal of the non-oxidative PPP produces ribose-5-phosphate. However, the decreased NADPH production reduces glutathione recycling, resulting in decreased protection against the reactive oxygen species (ROS) produced during oxidative protein folding. The disturbed proteostasis activates the unfolded protein response and protein degradation. Moreover, the oxidative stress induces ferroptosis, which, together with altered matrix properties, results in a chondrodysplasia phenotype. Collectively, these data show that in hypoxia, the PPP is crucial to produce reducing power that confines ROS generated by oxidative protein folding and thereby controls proteostasis and prevents ferroptosis.
Project description:Mitochondrial NADPH protects cells against mitochondrial oxidative stress by serving as an electron donor to antioxidant defense systems. However, due to technical challenges, it still remains unknown as to the pool size of mitochondrial NADPH, its dynamics, and NADPH/NADP+ ratio. Here, we have systemically modulated production rates of H2O2 in mitochondria and assessed mitochondrial NADPH metabolism using iNap sensors, 13C glucose isotopic tracers, and a mathematical model. Using sensors, we observed decreases in mitochondrial NADPH caused by excessive generation of mitochondrial H2O2, whereas the cytosolic NADPH was maintained upon perturbation. We further quantified the extent of mitochondrial NADPH/NADP+ based on the mathematical analysis. Utilizing 13C glucose isotopic tracers, we found increased activity in the pentose phosphate pathway (PPP) accompanied small decreases in the mitochondrial NADPH pool, whereas larger decreases induced both PPP activity and glucose anaplerosis. Thus, our integrative and quantitative approach provides insight into mitochondrial NADPH metabolism during mitochondrial oxidative stress.
Project description:Neutrophils are cells at the frontline of innate immunity that can quickly activate effector functions to eliminate pathogens upon stimulation. However, little is known about the metabolic adaptations that power these functions. Here we show rapid metabolic alterations in neutrophils upon activation, particularly drastic reconfiguration around the pentose phosphate pathway, which is specifically and quantitatively coupled to an oxidative burst. During this oxidative burst, neutrophils switch from glycolysis-dominant metabolism to a unique metabolic mode termed 'pentose cycle', where all glucose-6-phosphate is diverted into oxidative pentose phosphate pathway and net flux through upper glycolysis is reversed to allow substantial recycling of pentose phosphates. This reconfiguration maximizes NADPH yield to fuel superoxide production via NADPH oxidase. Disruptions of pentose cycle greatly suppress oxidative burst, the release of neutrophil extracellular traps and pathogen killing by neutrophils. Together, these results demonstrate the remarkable metabolic flexibility of neutrophils, which is essential for their functions as the first responders in innate immunity.
Project description:Vascular mural cells (vMCs) play an essential role in the development and maturation of the vasculature by promoting vessel stabilization through their interactions with endothelial cells. Whether endothelial metabolism influences mural cell recruitment and differentiation is unknown. Here, we show that the oxidative pentose phosphate pathway (oxPPP) in endothelial cells is required for establishing vMC coverage of the dorsal aorta during early vertebrate development in zebrafish and mice. We demonstrate that laminar shear stress and blood flow maintain oxPPP activity, which in turn, promotes elastin expression in blood vessels through production of ribose-5-phosphate. Elastin is both necessary and sufficient to drive vMC recruitment and maintenance when the oxPPP is active. In summary, our work demonstrates that endothelial cell metabolism regulates blood vessel maturation by controlling vascular matrix composition and vMC recruitment.