Project description:Polyamines are ubiquitous, amine-rich molecules with diverse processes in biology. Recent work has highlighted that polyamines exert profound roles on the mammalian immune system, particularly inflammation and cancer. The mechanisms by which they control immunity are still being described. In the context of inflammation and autoimmunity, polyamine levels inversely correlate to autoimmune phenotypes, with lower polyamine levels associated with higher inflammatory responses. Conversely, in the context of cancer, polyamines and polyamine biosynthetic genes positively correlate with the severity of malignancy. Blockade of polyamine metabolism in cancer results in reduced tumor growth, and the effects appear to be mediated by an increase in T-cell infiltration and a pro-inflammatory phenotype of macrophages. These studies suggest that polyamine depletion leads to inflammation and that polyamine enrichment potentiates myeloid cell immune suppression. Indeed, combinatorial treatment with polyamine blockade and immunotherapy has shown efficacy in pre-clinical models of cancer. Considering the efficacy of immunotherapies is linked to autoimmune sequelae in humans, termed immune-adverse related events (iAREs), this suggests that polyamine levels may govern the inflammatory response to immunotherapies. This review proposes that polyamine metabolism acts to balance autoimmune inflammation and anti-tumor immunity and that polyamine levels can be used to monitor immune responses and responsiveness to immunotherapy.
Project description:Milk is rich in miRNAs that appear to play important roles in the postnatal development of all mammals. Currently, two competing hypotheses exist: the functional hypothesis, which proposes that milk miRNAs are transferred to the offspring and exert physiological regulatory functions, and the nutritional hypothesis, which suggests that these molecules do not reach the systemic circulation of the milk recipient, but merely provide nutrition without conferring active regulatory signals to the offspring. The functional hypothesis is based on indirect evidence and requires further investigation. The nutritional hypothesis is primarily based on three mouse models, which are inherently problematic: 1) miRNA-375 KO mice, 2) miRNA-200c/141 KO mice, and 3) transgenic mice presenting high levels of miRNA-30b in milk. This article presents circumstantial evidence that these mouse models may all be inappropriate to study the physiological traffic of milk miRNAs to the newborn mammal, and calls for new studies using more relevant mouse models or human milk to address the fate and role of milk miRNAs in the offspring and the adult consumer of cow's milk.
Project description:Understanding how dietary nutrients modulate the gut microbiome is of great interest for the development of food products and eating patterns for combatting the global burden of non-communicable diseases. In this narrative review we assess scientific studies published from 2005 to 2019 that evaluated the effect of micro- and macro-nutrients on the composition of the gut microbiome using in vitro and in vivo models, and human clinical trials. The clinical evidence for micronutrients is less clear and generally lacking. However, preclinical evidence suggests that red wine- and tea-derived polyphenols and vitamin D can modulate potentially beneficial bacteria. Current research shows consistent clinical evidence that dietary fibers, including arabinoxylans, galacto-oligosaccharides, inulin, and oligofructose, promote a range of beneficial bacteria and suppress potentially detrimental species. The preclinical evidence suggests that both the quantity and type of fat modulate both beneficial and potentially detrimental microbes, as well as the Firmicutes/Bacteroides ratio in the gut. Clinical and preclinical studies suggest that the type and amount of proteins in the diet has substantial and differential effects on the gut microbiota. Further clinical investigation of the effect of micronutrients and macronutrients on the microbiome and metabolome is warranted, along with understanding how this influences host health.
Project description:Metabolic reprogramming of innate immune cells occurs during both the hyperinflammatory and immunotolerant phases of sepsis. The hypoxia inducible factor (HIF) signaling pathway plays a vital role in regulating these metabolic changes. This review initially summarizes the HIF-driven changes in metabolic dynamics of innate immune cells in response to sepsis. The hyperinflammatory phase of sepsis is accompanied by a metabolic switch from oxidative phosphorylation to HIF-1α mediated glycolysis. Furthermore, HIF driven alterations in arginine metabolism also occur during this phase. This promotes sepsis pathophysiology and the development of clinical symptoms. These early metabolic changes are followed by a late immunotolerant phase, in which suppressed HIF signaling promotes a switch from aerobic glycolysis to fatty acid oxidation, with a subsequent anti-inflammatory response developing. Recently the molecular mechanisms controlling HIF activation during these early and late phases have begun to be elucidated. In the final part of this review the contribution of toll-like receptors, transcription factors, metabolic intermediates, kinases and reactive oxygen species, in governing the HIF-induced metabolic reprogramming of innate immune cells will be discussed. Importantly, understanding these regulatory mechanisms can lead to the development of novel diagnostic and therapeutic strategies targeting the HIF-dependent metabolic state of innate immune cells.
Project description:The human population is getting ageing. Both ageing and age-related diseases are correlated with an increased number of senescent cells in the organism. Senescent cells do not divide but are metabolically active and influence their environment by secreting many proteins due to a phenomenon known as senescence associated secretory phenotype (SASP). Senescent cells differ from young cells by several features. They possess more damaged DNA, more impaired mitochondria and an increased level of free radicals that cause the oxidation of macromolecules. However, not only biochemical and structural changes are related to senescence. Senescent cells have an altered chromatin structure, and in consequence, altered gene expression. With age, the level of heterochromatin decreases, and less condensed chromatin is more prone to DNA damage. On the one hand, some gene promoters are easily available for the transcriptional machinery; on the other hand, some genes are more protected (locally increased level of heterochromatin). The structure of chromatin is precisely regulated by the epigenetic modification of DNA and posttranslational modification of histones. The methylation of DNA inhibits transcription, histone methylation mostly leads to a more condensed chromatin structure (with some exceptions) and acetylation plays an opposing role. The modification of both DNA and histones is regulated by factors present in the diet. This means that compounds contained in daily food can alter gene expression and protect cells from senescence, and therefore protect the organism from ageing. An opinion prevailed for some time that compounds from the diet do not act through direct regulation of the processes in the organism but through modification of the physiology of the microbiome. In this review we try to explain the role of some food compounds, which by acting on the epigenetic level might protect the organism from age-related diseases and slow down ageing. We also try to shed some light on the role of microbiome in this process.
Project description:Immunometabolism has been the focus of extensive research over the last years, especially in terms of augmenting anti-tumor immune responses. Regulatory T cells (Tregs) are a subset of CD4+ T cells, which have been known for their immunosuppressive roles in various conditions including anti-tumor immune responses. Even though several studies aimed to target Tregs in the tumor microenvironment (TME), such approaches generally result in the inhibition of the Tregs non-specifically, which may cause immunopathologies such as autoimmunity. Therefore, specifically targeting the Tregs in the TME would be vital in terms of achieving a successful and specific treatment. Recently, an association between Tregs and isoleucine, which represents one type of branched-chain amino acids (BCAAs), has been demonstrated. The presence of isoleucine seems to affect majorly Tregs, rather than conventional T cells. Considering the fact that Tregs bear several distinct metabolic features in the TME, targeting their immunometabolic pathways may be a rational approach. In this Review, we provide a general overview on the potential distinct metabolic features of T cells, especially focusing on BCAAs in Tregs as well as in their subtypes.
Project description:Cardiometabolic disease (CMD), characterized with metabolic disorder triggered cardiovascular events, is a leading cause of death and disability. Metabolic disorders trigger chronic low-grade inflammation, and actually, a new concept of metaflammation has been proposed to define the state of metabolism connected with immunological adaptations. Amongst the continuously increased list of systemic metabolites in regulation of immune system, bile acids (BAs) represent a distinct class of metabolites implicated in the whole process of CMD development because of its multifaceted roles in shaping systemic immunometabolism. BAs can directly modulate the immune system by either boosting or inhibiting inflammatory responses via diverse mechanisms. Moreover, BAs are key determinants in maintaining the dynamic communication between the host and microbiota. Importantly, BAs via targeting Farnesoid X receptor (FXR) and diverse other nuclear receptors play key roles in regulating metabolic homeostasis of lipids, glucose, and amino acids. Moreover, BAs axis per se is susceptible to inflammatory and metabolic intervention, and thereby BAs axis may constitute a reciprocal regulatory loop in metaflammation. We thus propose that BAs axis represents a core coordinator in integrating systemic immunometabolism implicated in the process of CMD. We provide an updated summary and an intensive discussion about how BAs shape both the innate and adaptive immune system, and how BAs axis function as a core coordinator in integrating metabolic disorder to chronic inflammation in conditions of CMD.
Project description:Codon usage bias is a fundamental feature of all genomes and plays an important role in determining gene expression levels. The codon usage was thought to influence gene expression mainly due to its impact on translation. Recently, however, codon usage was shown to affect transcription of fungal and mammalian genes, indicating the existence of a gene regulatory phenomenon with unknown mechanism. In Neurospora, codon usage biases strongly correlate with mRNA levels genome-wide, and here we show that the correlation between codon usage and RNA levels is maintained in the nucleus. In addition, codon optimality is tightly correlated with both total and nuclear RNA levels, suggesting that codon usage broadly influences mRNA levels through transcription in a translation-independent manner. A large-scale RNA sequencing-based genetic screen in Neurospora identified 18 candidate factors that when deleted decreased the genome-wide correlation between codon usage and RNA levels and reduced the codon usage effect on gene expression. Most of these factors, such as the H3K36 methyltransferase, are chromatin regulators or transcription factors. Together, our results suggest that the transcriptional effect of codon usage is mediated by multiple transcriptional regulatory mechanisms.
Project description:The design of an adequate culture medium is an essential step in the micropropagation process of plant species. Adjustment and balance of medium components involve the interaction of several factors, such as mineral nutrients, vitamins, and plant growth regulators (PGRs). This work aimed to shed light on the role of these three components on the plant growth and quality of micropropagated woody plants, using Actinidia arguta as a plant model. Two experiments using a five-dimensional experimental design space were defined using the Design of Experiments (DoE) method, to study the effect of five mineral factors (NH4NO3, KNO3, Mesos, Micros, and Iron) and five vitamins (Myo-inositol, thiamine, nicotinic acid, pyridoxine, and vitamin E). A third experiment, using 20 combinations of two PGRs: BAP (6-benzylaminopurine) and GA3 (gibberellic acid) was performed. Artificial Neural Networks (ANNs) algorithms were used to build models with the whole database to determine the effect of those components on several growth and quality parameters. Neurofuzzy logic allowed us to decipher and generate new knowledge on the hierarchy of some minerals as essential components of the culture media over vitamins and PRGs, suggesting rules about how MS basal media formulation could be modified to assess the quality of micropropagated woody plants.