Unknown

Dataset Information

0

Direct discrimination of cell surface glycosylation signatures using a single pH-responsive boronic acid-functionalized polymer.


ABSTRACT: Cell surface glycans serve fundamental roles in many biological processes, including cell-cell interaction, pathogen infection, and cancer metastasis. Cancer cell surface have alternative glycosylation to healthy cells, making these changes useful hallmarks of cancer. However, the diversity of glycan structures makes glycosylation profiling very challenging, with glycan 'fingerprints' providing an important tool for assessing cell state. In this work, we utilized the pH-responsive differential binding of boronic acid (BA) moieties with cell surface glycans to generate a high-content six-channel BA-based sensor array that uses a single polymer to distinguish mammalian cell types. This sensing platform provided efficient discrimination of cancer cells and readily discriminated between Chinese hamster ovary (CHO) glycomutants, providing evidence that discrimination is glycan-driven. The BA-functionalized polymer sensor array is readily scalable, providing access to new diagnostic and therapeutic strategies for cell surface glycosylation-associated diseases.

SUBMITTER: Jiang M 

PROVIDER: S-EPMC9645398 | biostudies-literature | 2022 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Direct discrimination of cell surface glycosylation signatures using a single pH-responsive boronic acid-functionalized polymer.

Jiang Mingdi M   Chattopadhyay Aritra Nath AN   Li Cheng Hsuan CH   Geng Yingying Y   Luther David C DC   Huang Rui R   Rotello Vincent M VM  

Chemical science 20221024 43


Cell surface glycans serve fundamental roles in many biological processes, including cell-cell interaction, pathogen infection, and cancer metastasis. Cancer cell surface have alternative glycosylation to healthy cells, making these changes useful hallmarks of cancer. However, the diversity of glycan structures makes glycosylation profiling very challenging, with glycan 'fingerprints' providing an important tool for assessing cell state. In this work, we utilized the pH-responsive differential b  ...[more]

Similar Datasets

| S-EPMC10018648 | biostudies-literature
| S-EPMC10103745 | biostudies-literature
| S-EPMC10246652 | biostudies-literature
| S-EPMC9585438 | biostudies-literature
| S-EPMC9930926 | biostudies-literature
| S-EPMC9682885 | biostudies-literature
| S-EPMC9945064 | biostudies-literature