Unknown

Dataset Information

0

Noncovalent Enzyme Nanogels via a Photocleavable Linkage.


ABSTRACT: Enzyme nanogels (ENGs) offer a convenient method to protect therapeutic proteins from in vivo stressors. Current methodologies to prepare ENGs rely on either covalent modification of surface residues or the noncovalent assembly of monomers at the protein surface. In this study, we report a new method for the preparation of noncovalent ENGs that utilizes a heterobifunctional, photocleavable monomer as a hybrid approach. Initial covalent modification with this monomer established a polymerizable handle at the protein surface, followed by radical polymerization with poly(ethylene glycol) methacrylate monomer and ethylene glycol dimethacrylate crosslinker in solution. Final photoirradiation cleaved the linkage between the polymer and protein to afford the noncovalent ENGs. The enzyme phenylalanine ammonia lyase (PAL) was utilized as a model protein yielding well-defined nanogels 80 nm in size by dynamic light scattering (DLS) and 76 nm by atomic force microscopy. The stability of PAL after exposure to trypsin or low pH was assessed and was found to be more stable in the noncovalent nanogel compared to PAL alone. This approach may be useful for the stabilization of active enzymes.

SUBMITTER: Forsythe NL 

PROVIDER: S-EPMC9686129 | biostudies-literature | 2022 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Noncovalent Enzyme Nanogels via a Photocleavable Linkage.

Forsythe Neil L NL   Tan Mikayla F MF   Vinciguerra Daniele D   Woodford Jacquelin J   Stieg Adam Z AZ   Maynard Heather D HD  

Macromolecules 20221103 22


Enzyme nanogels (ENGs) offer a convenient method to protect therapeutic proteins from in vivo stressors. Current methodologies to prepare ENGs rely on either covalent modification of surface residues or the noncovalent assembly of monomers at the protein surface. In this study, we report a new method for the preparation of noncovalent ENGs that utilizes a heterobifunctional, photocleavable monomer as a hybrid approach. Initial covalent modification with this monomer established a polymerizable h  ...[more]

Similar Datasets

| S-EPMC8746816 | biostudies-literature
| S-EPMC11155517 | biostudies-literature
| S-EPMC5883864 | biostudies-literature
| S-EPMC9227723 | biostudies-literature
| S-EPMC8413279 | biostudies-literature
| S-EPMC7613372 | biostudies-literature
| S-EPMC9562763 | biostudies-literature
| S-EPMC2607045 | biostudies-literature
| S-EPMC11464733 | biostudies-literature
| S-EPMC9571764 | biostudies-literature