Unknown

Dataset Information

0

Genome-wide analysis of a cellular exercise model based on electrical pulse stimulation.


ABSTRACT: Skeletal muscle communicates with other organs via myokines, which are secreted by muscle during exercise and exert various effects. Despite much investigation of the exercise, the underlying molecular mechanisms are still not fully understood. Here, we applied an in vitro exercise model in which cultured C2C12 myotubes were subjected to electrical pulse stimulation (EPS), which mimics contracting muscle. Based on the significantly up- and down-regulated genes in EPS, we constructed an in silico model to predict exercise responses at the transcriptional level. The in silico model revealed similarities in the transcriptomes of the EPS and exercised animals. Comparative analysis of the EPS data and exercised mouse muscle identified putative biomarkers in exercise signaling pathways and enabled to discover novel exercise-induced myokines. Biochemical analysis of selected exercise signature genes in muscle from exercised mice showed that EPS mimics in vivo exercise, at least in part, at the transcriptional level. Consequently, we provide a novel myokine, Amphiregulin (AREG), up-regulated both in vitro and in vivo, that would be a potential target for exercise mimetics.

SUBMITTER: Lee B 

PROVIDER: S-EPMC9731977 | biostudies-literature | 2022 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genome-wide analysis of a cellular exercise model based on electrical pulse stimulation.

Lee Bora B   Kim Seon Kyu SK   Shin Yeo Jin YJ   Son Young Hoon YH   Yang Jae Won JW   Lee Seung-Min SM   Yang Yong Ryul YR   Lee Kwang-Pyo KP   Kwon Ki-Sun KS  

Scientific reports 20221208 1


Skeletal muscle communicates with other organs via myokines, which are secreted by muscle during exercise and exert various effects. Despite much investigation of the exercise, the underlying molecular mechanisms are still not fully understood. Here, we applied an in vitro exercise model in which cultured C2C12 myotubes were subjected to electrical pulse stimulation (EPS), which mimics contracting muscle. Based on the significantly up- and down-regulated genes in EPS, we constructed an in silico  ...[more]

Similar Datasets

2022-12-14 | GSE176563 | GEO
| PRJNA736709 | ENA
| S-EPMC3310863 | biostudies-literature
2021-08-20 | E-MTAB-10833 | biostudies-arrayexpress
| PRJEB46916 | ENA
| S-EPMC6224291 | biostudies-literature
| S-EPMC10810886 | biostudies-literature
| S-EPMC11519318 | biostudies-literature
| S-EPMC10330807 | biostudies-literature
| S-EPMC3413096 | biostudies-literature