Project description:Environmental enrichment (EE) is a rodent behavioral paradigm that can model the cognitive benefits to humans associated with intellectual activity and exercise. We recently discovered EE's anti-inflammatory protection of brain microglia against soluble oligomers of human amyloid β-protein (oAβ). Mechanistically, we report that the key factor in microglial protection by EE is chronically enhanced β-adrenergic signaling. Quantifying microglial morphology and inflammatory RNA profiles revealed that mice in standard housing (SH) fed the β-adrenergic agonist isoproterenol experienced similar protection of microglia against oAβ-induced inflammation as did mice in EE Conversely, mice in EE fed the β-adrenergic antagonist propranolol lost microglial protection against oAβ. Mice lacking β1/β2-adrenergic receptors showed no protection of microglia by EE In SH mice, quantification of norepinephrine in hippocampus and interstitial fluid showed that oAβ disrupted norepinephrine homeostasis, and microglial-specific analysis of β2-adrenergic receptors indicated a decreased receptor level. Both features were rescued by EE Thus, enhanced β-adrenergic signaling at the ligand and receptor levels mediates potent benefits of EE on microglial inflammation induced by human Aβ oligomers in vivo.
Project description:G protein-coupled receptors' conformational landscape can be affected by their local, microscopic interactions within the cell plasma membrane. We employ here a pleiotropic stimulus, namely osmotic swelling, to alter the cortical environment within intact cells and monitor the response in terms of receptor function and downstream signaling. We observe that in osmotically swollen cells the β2-adrenergic receptor, a prototypical GPCR, favors an active conformation, resulting in cAMP transient responses to adrenergic stimulation that have increased amplitude. The results are validated in primary cell types such as adult cardiomyocytes, a model system where swelling occurs upon ischemia-reperfusion injury. Our results suggest that receptors' function is finely modulated by their biophysical context, and specifically that osmotic swelling acts as a potentiator of downstream signaling, not only for the β2-adrenergic receptor, but also for other receptors, hinting at a more general regulatory mechanism.
Project description:Cardiac β₂-adrenergic receptors (ARs) are known to inhibit collagen production and fibrosis in cardiac fibroblasts and myocytes. The β₂AR is a Gs protein-coupled receptor (GPCR) and, upon its activation, stimulates the generation of cyclic 3',5'-adenosine monophosphate (cAMP). cAMP has two effectors: protein kinase A (PKA) and the exchange protein directly activated by cAMP (Epac). Epac1 has been shown to inhibit cardiac fibroblast activation and fibrosis. Osteopontin (OPN) is a ubiquitous pro-inflammatory cytokine, which also mediates fibrosis in several tissues, including the heart. OPN underlies several cardiovascular pathologies, including atherosclerosis and cardiac adverse remodeling. We found that the cardiotoxic hormone aldosterone transcriptionally upregulates OPN in H9c2 rat cardiac myoblasts-an effect prevented by endogenous β₂AR activation. Additionally, CRISPR-mediated OPN deletion enhanced cAMP generation in response to both β₁AR and β₂AR activation in H9c2 cardiomyocytes, leading to the upregulation of Epac1 protein levels. These effects rendered β₂AR stimulation capable of completely abrogating transforming growth factor (TGF)-β-dependent fibrosis in OPN-lacking H9c2 cardiomyocytes. Finally, OPN interacted constitutively with Gαs subunits in H9c2 cardiac cells. Thus, we uncovered a direct inhibitory role of OPN in cardiac β₂AR anti-fibrotic signaling via cAMP/Epac1. OPN blockade could be of value in the treatment and/or prevention of cardiac fibrosis.
Project description:Microglia, macrophage-like resident immune cells in the brain, possess both neurotoxic and neuroprotective properties and have a critical role in the development of Alzheimer's disease (AD). We examined the function of Interleukin-34 (IL-34), a newly discovered cytokine, on microglia because it reportedly induces proliferation of monocytes and macrophages. We observed that the neuronal cells primarily produce IL-34 and that microglia express its receptor, colony-stimulating factor 1 receptor. IL-34 promoted microglial proliferation and clearance of soluble oligomeric amyloid-β (oAβ), which mediates synaptic dysfunction and neuronal damage in AD. IL-34 increased the expression of insulin-degrading enzyme, aiding the clearance of oAβ, and induced the antioxidant enzyme heme oxygenase-1 in microglia to reduce oxidative stress, without producing neurotoxic molecules. Consequently, microglia treated with IL-34 attenuated oAβ neurotoxicity in primary neuron-microglia co-cultures. In vivo, intracerebroventricular administration of IL-34 ameliorated impairment of associative learning and reduced oAβ levels through up-regulation of insulin-degrading enzyme and heme oxygenase-1 in an APP/PS1 transgenic mouse model of AD. These findings support the idea that enhancement of the neuroprotective property of microglia by IL-34 may be an effective approach against oAβ neurotoxicity in AD.
Project description:Fatty acids are metabolized by β-oxidation within the "mitochondrial ketogenic pathway" (MKP) to generate β-hydroxybutyrate (BHB), a ketone body. BHB can be generated by most cells but largely by hepatocytes following exercise, fasting, or ketogenic diet consumption. BHB has been shown to modulate systemic and brain inflammation; however, its direct effects on microglia have been little studied. We investigated the impact of BHB on Aβ oligomer (AβO)-stimulated human iPS-derived microglia (hiMG), a model relevant to the pathogenesis of Alzheimer's disease (AD). HiMG responded to AβO with proinflammatory activation, which was mitigated by BHB at physiological concentrations of 0.1-2 mM. AβO stimulated glycolytic transcripts, suppressed genes in the β-oxidation pathway, and induced over-expression of AD-relevant p46Shc, an endogenous inhibitor of thiolase, actions that are expected to suppress MKP. AβO also triggered mitochondrial Ca2+ increase, mitochondrial reactive oxygen species production, and activation of the mitochondrial permeability transition pore. BHB potently ameliorated all the above mitochondrial changes and rectified the MKP, resulting in reduced inflammasome activation and recovery of the phagocytotic function impaired by AβO. These results indicate that microglia MKP can be induced to modulate microglia immunometabolism, and that BHB can remedy "keto-deficiency" resulting from MKP suppression and shift microglia away from proinflammatory mitochondrial metabolism. These effects of BHB may contribute to the beneficial effects of ketogenic diet intervention in aged mice and in human subjects with mild AD.
Project description:Amyloid β (Aβ) forms aggregates in the Alzheimer's disease brain and is well known for its pathological roles. Recent studies show that it also regulates neuronal physiology in the healthy brain. Whether Aβ also regulates glial physiology in the normal brain, however, has remained unclear. In this article, we describe the discovery of a novel signaling pathway activated by the monomeric form of Aβ in vitro that plays essential roles in the regulation of microglial activity and the assembly of neocortex during mouse development in vivo. We find that activation of this pathway depends on the function of amyloid precursor and the heterotrimeric G protein regulator Ric8a in microglia and inhibits microglial immune activation at transcriptional and post-transcriptional levels. Genetic disruption of this pathway during neocortical development results in microglial dysregulation and excessive matrix proteinase activation, leading to basement membrane degradation, neuronal ectopia, and laminar disruption. These results uncover a previously unknown function of Aβ as a negative regulator of brain microglia and substantially elucidate the underlying molecular mechanisms. Considering the prominence of Aβ and neuroinflammation in the pathology of Alzheimer's disease, they also highlight a potentially overlooked role of Aβ monomer depletion in the development of the disease.
Project description:Alteration of ryanodine receptor (RyR)-mediated calcium (Ca2+) signaling has been reported in Alzheimer disease (AD) models. However, the molecular mechanisms underlying altered RyR-mediated intracellular Ca2+ release in AD remain to be fully elucidated. We report here that RyR2 undergoes post-translational modifications (phosphorylation, oxidation, and nitrosylation) in SH-SY5Y neuroblastoma cells expressing the β-amyloid precursor protein (βAPP) harboring the familial double Swedish mutations (APPswe). RyR2 macromolecular complex remodeling, characterized by depletion of the regulatory protein calstabin2, resulted in increased cytosolic Ca2+ levels and mitochondrial oxidative stress. We also report a functional interplay between amyloid β (Aβ), β-adrenergic signaling, and altered Ca2+ signaling via leaky RyR2 channels. Thus, post-translational modifications of RyR occur downstream of Aβ through a β2-adrenergic signaling cascade that activates PKA. RyR2 remodeling in turn enhances βAPP processing. Importantly, pharmacological stabilization of the binding of calstabin2 to RyR2 channels, which prevents Ca2+ leakage, or blocking the β2-adrenergic signaling cascade reduced βAPP processing and the production of Aβ in APPswe-expressing SH-SY5Y cells. We conclude that targeting RyR-mediated Ca2+ leakage may be a therapeutic approach to treat AD.
Project description:The use of anthracyclines such as doxorubicin (DOX) has improved outcome in cancer patients, yet associated risks of cardiomyopathy have limited their clinical application. DOX-associated cardiotoxicity is frequently irreversible and typically progresses to heart failure (HF) but our understanding of molecular mechanisms underlying this and essential for development of cardioprotective strategies remains largely obscure. As microRNAs (miRNAs) have been shown to play potent regulatory roles in both cardiovascular disease and cancer, we investigated miRNA changes in DOX-induced HF and the alteration of cellular processes downstream. Myocardial miRNA profiling was performed after DOX-induced injury, either via acute application to isolated cardiomyocytes or via chronic exposure in vivo, and compared with miRNA profiles from remodeled hearts following myocardial infarction. The miR-30 family was downregulated in all three models. We describe here that miR-30 act regulating the β-adrenergic pathway, where preferential β1- and β2-adrenoceptor (β1AR and β2AR) direct inhibition is combined with Giα-2 targeting for fine-tuning. Importantly, we show that miR-30 also target the pro-apoptotic gene BNIP3L/NIX. In aggregate, we demonstrate that high miR-30 levels are protective against DOX toxicity and correlate this in turn with lower reactive oxygen species generation. In addition, we identify GATA-6 as a mediator of DOX-associated reductions in miR-30 expression. In conclusion, we describe that DOX causes acute and sustained miR-30 downregulation in cardiomyocytes via GATA-6. miR-30 overexpression protects cardiac cells from DOX-induced apoptosis, and its maintenance represents a potential cardioprotective and anti-tumorigenic strategy for anthracyclines.
Project description:The role of microglia in amyloid-β (Aβ) deposition is controversial. In the present study, an organotypic hippocampal slice culture (OHSC) system with an in vivo-like microglial-neuronal environment was used to investigate the potential contribution of microglia to Aβ plaque formation. We found that microglia ingested Aβ, thereby preventing plaque formation in OHSCs. Conversely, Aβ deposits formed rapidly in microglia-free wild-type slices. The capacity to prevent Aβ plaque formation was absent in forebrain microglia from young adult but not juvenile 5xFamilial Alzheimer's disease (FAD) mice. Since no loss of Aβ clearance capacity was observed in both wild-type and cerebellar microglia from 5xFAD animals, the high Aβ1-42 burden in the forebrain of 5xFAD animals likely underlies the exhaustion of microglial Aβ clearance capacity. These data may therefore explain why Aβ plaque formation has never been described in wild-type mice, and point to a beneficial role of microglia in AD pathology. We also describe a new method to study Aβ plaque formation in a cell culture setting.
Project description:Enhanced sympathetic signaling, often associated with obesity and chronic stress, is increasingly acknowledged as a contributor to cancer aggressiveness. In prostate cancer, intact sympathetic nerves are critical for tumor formation, and sympathectomy induces apoptosis and blocks tumor growth. Perineural invasion, involving enrichment of intra-prostatic nerves, is frequently observed in prostate cancer and is associated with poor prognosis. β2-adrenergic receptor (ADRB2), the most abundant receptor for sympathetic signals in prostate luminal cells, has been shown to regulate trans-differentiation of cancer cells to neuroendocrine-like cells and to affect apoptosis, angiogenesis, epithelial-mesenchymal transition, migration, and metastasis. Epidemiologic studies have shown that use of β-blockers, inhibiting β-adrenergic receptor activity, is associated with reduced prostate cancer-specific mortality. In this review, we aim to present an overview on how β-adrenergic receptor and its downstream signaling cascade influence the development of aggressive prostate cancer, primarily through regulating neuroendocrine differentiation.