Project description:Multifunctional N6-methyladenosine (m6A) has been revealed to be an important epigenetic component in various physiological and pathological processes, but its role in female ovarian aging remains unclear. Thus, we demonstrated m6A demethylase FTO downregulation and the ensuing increased m6A in granulosa cells (GCs) of human aged ovaries, while FTO-knockdown GCs showed faster aging-related phenotypes mediated. Using the m6A-RNA-sequence technique (m6A-seq), increased m6A was found in the FOS-mRNA-3'UTR, which is suggested to be an erasing target of FTO that slows the degradation of FOS-mRNA to upregulate FOS expression in GCs, eventually resulting in GC-mediated ovarian aging. FTO acts as a senescence-retarding protein via m6A, and FOS knockdown significantly alleviates the aging of FTO-knockdown GCs. Altogether, the abovementioned results indicate that FTO in GCs retards FOS-dependent ovarian aging, which is a potential diagnostic and therapeutic target against ovarian aging and age-related reproductive diseases.
Project description:Age-related macular degeneration (AMD) is the leading cause of vision loss and blindness among people over the age of 60. Vascular endothelial growth factor (VEGF) plays a major role in pathological angiogenesis in AMD. Herein, we present the development of an anti- human VEGF repebody, which is a small-sized protein binder consisting of leucine-rich repeat (LRR) modules. The anti-VEGF repebody selected through a phage-display was shown to have a high affinity and specificity for human VEGF. We demonstrate that this repebody effectively inhibits in vitro angiogenic cellular processes, such as proliferation and migration, by blocking the VEGF-mediated signaling pathway. The repebody was also shown to have a strong suppression effect on choroidal neovascularization (CNV) and vascular leakage in vivo. Our results indicate that the anti-VEGF repebody has a therapeutic potential for treating neovascular AMD as well as other VEGF-involved diseases including diabetic retinopathy and metastatic cancers.
Project description:PurposeThis study examined the role of the CSF1/CSF1Raxis in the crosstalk between choroidal vascular endothelial cells (CVECs) and macrophages during the formation of choroidal neovascularization (CNV).MethodsQuantitative reverse transcriptase (QRT)-PCR, Western blot and ELISA measured the production and release of CSF1 from human choroidal vascular endothelial cells (HCVECs) under hypoxic conditions. Western blot detected CSF1 released from HCVECs under hypoxic conditions that activated the PI3K/AKT/FOXO1 axis in human macrophages via binding to CSF1R. Transwell migration assay, qRT-PCR, and Western blot detected the effect of CSF1 released from HCVECs on macrophage migration and M2 polarization via the CSF1R/PI3K/AKT/FOXO1 pathway. Incorporation of 5-ethynyl-20-deoxyuridine, transwell migration, and tube formation assays detected the effects of CSF1/CSF1R on the behaviors of HCVECs. Fundus fluorescein angiography (FFA), indocyanine green angiography (ICGA), and immunofluorescence detected the effect of blockade of CSF1/CSF1R on mouse laser-induced CNV. Color fundus photograph, ICGA, and FFA detected CNV lesions in neovascular AMD (nAMD) patients. ELISA detected CSF1 and CSF1R in the aqueous humor of age-related cataract and nAMD patients.ResultsCSF1 released from HCVECs under hypoxic conditions activated the PI3K/AKT/FOXO1 axis in human macrophages via binding to CSF1R, promoting macrophage migration and M2 polarization via up-regulation of the CSF1R/PI3K/AKT/FOXO1 pathway. Human macrophages promoted the proliferation, migration, and tube formation of HCVECs in a CSF1/CSFR1-dependent manner under hypoxic conditions. CSF1/CSF1R blockade ameliorated the formation of mouse laser-induced CNV. CSF1 and CSF1R were increased in the aqueous humor of nAMD patients.ConclusionsOur results affirmed the crucial role of CSF1/CSF1R in boosting the formation of CNV and offered potential molecular targets for the treatment of nAMD.
Project description:Choroidal neovascularization (CNV), is a major cause of irreversible blindness among the elderly population in developed countries, which is resulted from subretinal fibrosis without effective therapeutic strategies. Endothelial-to-mesenchymal transition (EndMT) of choroidal vascular endothelial cells (CVECs) contributes to subretinal fibrosis. Lycopene (LYC), a non-pro-vitamin A carotenoid, plays an anti-fibrotic role. Herein, we explored the effect and mechanism of LYC on the EndMT of CVECs during CNV. Firstly, LYC inhibited EndMT in hypoxic human choroidal endothelial cells (HCVECs). Meanwhile, LYC inhibited proliferation, androgen receptor (AR) expression and nuclear localization in hypoxic HCVECs. Then LYC-inhibited AR promotes the activation of microphthalmia-associated transcription factor (MITF) in hypoxic HCVECs. In addition, LYC down-regulated AR and induced MITF up-regulated pigment epithelium-derived factor (PEDF) transcription and expression in hypoxic HCVECs. Moreover, LYC-induced PEDF bound to laminin receptor (LR), inhibiting EndMT of hypoxic HCVECs via down-regulating protein kinase B (AKT)/β-catenin pathway. In vivo, LYC alleviated mouse laser-induced subretinal fibrosis secondary to CNV via up-regulating PEDF without any ocular or systemic toxicity. These results indicate that LYC inhibits EndMT of CVECs via modulating AR/MITF/PEDF/LR/AKT/β-catenin pathway, showing LYC is a promising therapeutic agent for CNV.
Project description:PurposeChoroidal neovascularization (CNV) is a common pathological change of various ocular diseases that causes serious damage to central vision. Accumulated evidence shows that microRNAs (miRNAs) are closely related with the regulation of endothelial metabolism, which plays crucial roles in angiogenesis. Here, we investigate the molecular mechanism underlying the regulation of endothelial glutamine metabolism by miR-376b-3p in the progression of CNV.MethodsHuman retinal microvascular endothelial cells (HRMECs) were transfected with control or miR-376b-3p mimics, and the expression of glutaminase 1 (GLS1), a rate-limiting enzyme in glutaminolysis, was detected by real-time PCR or Western blotting. The biological function and glutamine metabolism of transfected HRMECs were measured by related kits. Luciferase reporter assays were used to validate the CCAAT/enhancer-binding protein beta (CEBPB) was a target of miR-376b-3p. Chromatin immunoprecipitation and RNA immunoprecipitation assays were performed to verify the binding of CEBPB on the promoter region of GLS1. Fundus fluorescein angiography and immunofluorescence detected the effect of miR-376b-3p agomir on rat laser-induced CNV.ResultsThe expression of miR-376b-3p was decreased, whereas GLS1 expression was increased in the retinal pigment epithelial-choroidal complexes of rats with CNV. HRMECs transfected with miR-376b-3p mimic showed inhibition of CEBPB, resulting in the inactivation of GLS1 transcription and glutaminolysis. Moreover, the miR-376b-3p mimic inhibited proliferation, migration and tube formation but promoted apoptosis in HRMECs, whereas these effects counteracted by α-ketoglutarate supplementation or transfection with CEBPB overexpression plasmid. Finally, the intravitreal administration of the miR-376b-3p agomir restrained CNV formation.ConclusionsCollectively, miR-376b-3p is a suppressor of glutamine metabolism in endothelial cells that could be expected to become a therapeutic target for the treatment of CNV-related diseases.
Project description:ObjectiveFat mass and obesity-associated protein (FTO), an eraser of N 6-methyadenosine (m6A), plays oncogenic roles in various cancers. However, its role in hepatocellular carcinoma (HCC) is unclear. Furthermore, small extracellular vesicles (sEVs, or exosomes) are critical mediators of tumourigenesis and metastasis, but the relationship between FTO-mediated m6A modification and sEVs in HCC is unknown.DesignThe functions and mechanisms of FTO and glycoprotein non-metastatic melanoma protein B (GPNMB) in HCC progression were investigated in vitro and in vivo. Neutralising antibody of syndecan-4 (SDC4) was used to assess the significance of sEV-GPNMB. FTO inhibitor CS2 was used to examine the effects on anti-PD-1 and sorafenib treatment.ResultsFTO expression was upregulated in patient HCC tumours. Functionally, FTO promoted HCC cell proliferation, migration and invasion in vitro, and tumour growth and metastasis in vivo. FTO knockdown enhanced the activation and recruitment of tumour-infiltrating CD8+ T cells. Furthermore, we identified GPNMB to be a downstream target of FTO, which reduced the m6A abundance of GPNMB, hence, stabilising it from degradation by YTH N 6-methyladenosine RNA binding protein F2. Of note, GPNMB was packaged into sEVs derived from HCC cells and bound to the surface receptor SDC4 of CD8+ T cells, resulting in the inhibition of CD8+ T cell activation. A potential FTO inhibitor, CS2, suppresses the oncogenic functions of HCC cells and enhances the sensitivity of anti-PD-1 and sorafenib treatment.ConclusionTargeting the FTO/m6A/GPNMB axis could significantly suppress tumour growth and metastasis, and enhance immune activation, highlighting the potential of targeting FTO signalling with effective inhibitors for HCC therapy.
Project description:Pancreatic cancer is the deadliest malignancy of the digestive system and is the seventh most common cause of cancer-related deaths worldwide. The incidence and mortality of pancreatic cancer continue to increase, and its 5-year survival rate remains the lowest among all cancers. N6-methyladenine (m6A) is the most abundant reversible RNA modification in various eukaryotic messenger and long noncoding RNAs and plays crucial roles in the occurrence and development of cancers. However, the role of m6A in pancreatic cancer remains unclear. The present study aimed to explore the role of m6A and its regulators in pancreatic cancer and assess its underlying molecular mechanism associated with pancreatic cancer cell proliferation, invasion, and metastasis. Reduced expression of the m6A demethylase, fat mass and obesity-associated protein (FTO), was responsible for the high levels of m6A RNA modification in pancreatic cancer. Moreover, FTO demethylated the m6A modification of praja ring finger ubiquitin ligase 2 (PJA2), thereby reducing its mRNA decay, suppressing Wnt signaling, and ultimately restraining the proliferation, invasion, and metastasis of pancreatic cancer cells. Altogether, this study describes new, potential molecular therapeutic targets for pancreatic cancer that could pave the way to improve patient outcome.
Project description:Many conditions affecting the heart, brain, and even the eyes have their origins in blood vessel pathology, underscoring the role of vascular regulation. In age-related macular degeneration (AMD), there is excessive growth of abnormal blood vessels in the eye (choroidal neovascularization), eventually leading to vision loss due to detachment of retinal pigmented epithelium. As the advanced stage of this disease involves loss of retinal pigmented epithelium, much less attention has been given to early vascular events such as endothelial dysfunction. Although current gold standard therapy using inhibitors of vascular endothelial growth factor (VEGF) have achieved initial successes, some drawbacks include the lack of long-term restoration of visual acuity, as well as a subset of the patients being refractory to existing treatment, alluding us and others to hypothesize upon VEGF-independent mechanisms. Against this backdrop, we present here a nonexhaustive review on the vascular underpinnings of AMD, implications with genetic and systemic factors, experimental models for studying choroidal neovascularization, and interestingly, on both endothelial-centric pathways and noncell autonomous mechanisms. We hope to shed light on future research directions in improving vascular function in ocular disorders.
Project description:PurposeTo determine the effect of voluntary exercise on choroidal neovascularization (CNV) in mice.MethodsAge-matched wild-type C57BL/6J mice were housed in cages equipped with or without running wheels. After four weeks of voluntary running or sedentariness, mice were subjected to laser injury to induce CNV. After surgical recovery, mice were placed back in cages with or without exercise wheels for seven days. CNV lesion volumes were measured by confocal microscopy. The effect of wheel running only in the seven days after injury was also evaluated. Macrophage abundance and cytokine expression were quantified.ResultsIn the first study, exercise-trained mice exhibited a 45% reduction in CNV volume compared to sedentary mice. In the replication study, a 32% reduction in CNV volume in exercise-trained mice was observed (P = 0.029). Combining these two studies, voluntary exercise was found to reduce CNV by 41% (P = 0.0005). Exercise-trained male and female mice had similar CNV volumes (P = 0.99). The daily running distance did not correlate with CNV lesion size. Exercise only after the laser injury without a preconditioning period did not reduce CNV size (P = 0.41). CNV lesions of exercise-trained mice also exhibited significantly lower F4/80+ macrophage staining and Vegfa and Ccl2 mRNA expression.ConclusionsThese findings provide the first experimental evidence that voluntary exercise improves CNV outcomes. These studies indicate that exercise before laser treatment is required to improve CNV outcomes.
Project description:BackgroundKeloid is a dermal fibrotic disease characterized by excessive proliferation of dermal fibroblasts and deposition of excessive collagen. N6-methyladenosine (m6A) plays a significant role in numerous physiological and pathological regulatory processes in the human body. Fat mass and obesity-associated protein (FTO) is one of the most essential m6A demethylases. However, whether FTO has a regulatory role in keloid development remains to be determined.MethodsIn this study, we investigated the effects of the m6A demethylase FTO on keloid formation by performing hematoxylin and eosin (H&E) staining, m6A dot blotting, transwell migration experiment, and methylated RNA immunoprecipitation quantitative polymerase chain reaction (MeRIP-qPCR) tests, as well as real-time PCR (RT-PCR) and Western blot assays.ResultsThe H&E staining indicated abnormal arrangement and proliferation of fibroblasts in the keloid tissue. The m6A dot blotting and qPCR revealed lower levels of m6A modification and increased expression of the m6A demethylases FTO in keloid tissue. Furthermore, overexpression of FTO promoted fibroblast migration as well as the expression of collagen type I alpha 1 chain (COL1A1) and α-smooth muscle actin (α-SMA). Mechanistic experiments demonstrated that FTO enhances keloid formation by modulating COL1A1 m6A modification and messenger RNA (mRNA) stability. In addition, this study also revealed the role of FTO in the therapeutic effect of glucocorticoids on keloids.ConclusionsOur study demonstrates that FTO upregulates COL1A1 expression via regulating COL1A1 m6A modification and maintaining mRNA stability, hence promoting keloid development and providing a potential new therapeutic target for the treatment of keloids.