Unknown

Dataset Information

0

Impact of the Recent Clinical and Laboratory Standards Institute Breakpoint Changes on the Antimicrobial Spectrum of Aminoglycosides and the Activity of Plazomicin Against Multidrug-Resistant and Carbapenem-Resistant Enterobacterales From United States Medical Centers.


ABSTRACT:

Background

The Clinical and Laboratory Standards Institute (CLSI) lowered the Enterobacterales-susceptible/-resistant breakpoints for amikacin in 2023 from ≤16/≥64 mg/L to ≤4/≥16 mg/L and the breakpoints for gentamicin and tobramycin from ≤4/≥16 mg/L to ≤2/≥8 mg/L. Because aminoglycosides are frequently used to treat infections caused by multidrug-resistant (MDR) and carbapenem-resistant Enterobacterales (CRE), we evaluated the impact of these changes on the susceptibility rates (%S) of Enterobacterales collected from US medical centers.

Methods

A total of 9809 Enterobacterales isolates were consecutively collected (1/patient) from 37 US medical centers in 2017-2021 and susceptibility was tested by broth microdilution. Susceptibility rates were calculated using CLSI 2022, CLSI 2023, and US Food and Drug Administration 2022 criteria. Aminoglycoside-nonsusceptible isolates were screened for genes encoding aminoglycoside-modifying enzymes (AMEs) and 16S rRNA methyltransferases (16RMT).

Results

The CLSI breakpoint changes mostly affected amikacin, especially against MDR (94.0%S to 71.0%S), extended-spectrum β-lactamase (ESBL)-producing (96.9%S to 79.7%S), and CRE (75.2%S to 59.0%S) isolates. Plazomicin was active against 96.4% of isolates and retained potent activity against CRE (94.0%S), ESBL-producing (98.9%S), and MDR (94.8%S) isolates. Gentamicin and tobramycin showed limited activity against resistant subsets of Enterobacterales. The AME-encoding genes and 16RMT were observed in 801 (8.2%) and 11 (0.1%) isolates, respectively. Plazomicin was active against 97.3% of the AME producers.

Conclusions

The spectrum of activity of amikacin against resistant subsets of Enterobacterales was drastically reduced when interpretative criteria based on pharmacokinetic/pharmacodynamic parameters that are currently used to establish breakpoints for other antimicrobials were applied. Plazomicin was markedly more active than amikacin, gentamicin, or tobramycin against antimicrobial-resistant Enterobacterales.

SUBMITTER: Sader HS 

PROVIDER: S-EPMC9969732 | biostudies-literature | 2023 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Impact of the Recent Clinical and Laboratory Standards Institute Breakpoint Changes on the Antimicrobial Spectrum of Aminoglycosides and the Activity of Plazomicin Against Multidrug-Resistant and Carbapenem-Resistant Enterobacterales From United States Medical Centers.

Sader Helio S HS   Mendes Rodrigo E RE   Kimbrough John H JH   Kantro Valerie V   Castanheira Mariana M  

Open forum infectious diseases 20230203 2


<h4>Background</h4>The Clinical and Laboratory Standards Institute (CLSI) lowered the Enterobacterales-susceptible/-resistant breakpoints for amikacin in 2023 from ≤16/≥64 mg/L to ≤4/≥16 mg/L and the breakpoints for gentamicin and tobramycin from ≤4/≥16 mg/L to ≤2/≥8 mg/L. Because aminoglycosides are frequently used to treat infections caused by multidrug-resistant (MDR) and carbapenem-resistant Enterobacterales (CRE), we evaluated the impact of these changes on the susceptibility rates (%S) of  ...[more]

Similar Datasets

| S-EPMC6504153 | biostudies-literature
| S-EPMC9784334 | biostudies-literature
| PRJNA1102395 | ENA
| S-EPMC9989732 | biostudies-literature
| S-EPMC9525088 | biostudies-literature
| S-EPMC8944502 | biostudies-literature
| S-EPMC8600017 | biostudies-literature
| S-EPMC7168189 | biostudies-literature
| S-EPMC8295067 | biostudies-literature
| S-EPMC6105851 | biostudies-literature