Project description:Here we present the structure of mouse H-chain apoferritin at 2.7 Å (FSC = 0.143) solved by single particle cryogenic electron microscopy (cryo-EM) using a 200 kV device, the Thermo Fisher Glacios®. This is a compact, two-lens illumination system with a constant power objective lens, without any energy filters or aberration correctors, often thought of as a "screening cryo-microscope". Coulomb potential maps reveal clear densities for main chain carbonyl oxygens, residue side chains (including alternative conformations) and bound solvent molecules. We used a quasi-crystallographic reciprocal space approach to fit model coordinates to the experimental cryo-EM map. We argue that the advantages offered by (a) the high electronic and mechanical stability of the microscope, (b) the high emission stability and low beam energy spread of the high brightness Field Emission Gun (X-FEG), (c) direct electron detection technology and (d) particle-based Contrast Transfer Function (CTF) refinement have contributed to achieving high resolution. Overall, we show that basic electron optical settings for automated cryo-electron microscopy imaging can be used to determine structures approaching atomic resolution.
Project description:Ciliogenesis and cilia motility rely on the coordinated actions of diverse dyneins, yet the complexity of these motor proteins in cilia has posed challenges for understanding their specific roles. Traditional evolutionary analyses often overlook key family members due to technical limitations. Here, we present a cryo-EM-based, bottom-up approach for large-scale, de novo protein identification and functional prediction of endogenous axonemal dynein complexes. This approach led to the identification of a novel dynein heavy chain subfamily (XP_041462850), designated as DNAHX, from sea urchin sperm. Phylogenetic analysis indicates that DNAHX branches from the outer-arm dynein alpha chain during evolution and is found in specific animal lineages with external fertilization. DNAHX contains multiple insertions throughout the protein, locking DNAHX permanently in a pre-powerstroke state. The AAA1 site exhibits poor conservation of essential ATPase motifs, consistent with DNAHX's non-motile nature. DNAHX also forms a heterodimeric dynein complex, which we named dynein-X, with another dynein heavy chain and accessory chains. Furthermore, a subset of dynein-X displays an autoinhibited phi particle conformation, potentially facilitating the intraflagellar transport of axonemal dyneins. Our discovery of the novel, non-motile dynein heavy chain and the dynein-X complex provides valuable insights into the evolution of dyneins and potentially their diverse cellular functions.