Project description:BackgroundThe synergy between the human immunodeficiency virus (HIV) and Mycobacterium tuberculosis during co-infection of a host is well known. While this synergy is known to be driven by immunological deterioration, the metabolic mechanisms that contribute to the associated disease burden experienced during HIV/tuberculosis (TB) co-infection remain poorly understood. Furthermore, while anti-HIV treatments suppress viral replication, these therapeutics give rise to host metabolic disruption and adaptations beyond that induced by only infection or disease.MethodsIn this study, the serum metabolic profiles of healthy controls, untreated HIV-negative TB-positive patients, untreated HIV/TB co-infected patients, and HIV/TB co-infected patients on antiretroviral therapy (ART), were measured using two-dimensional gas chromatography time-of-flight mass spectrometry. Since no global metabolic profile for HIV/TB co-infection and the effect of ART has been published to date, this pilot study aimed to elucidate the general areas of metabolism affected during such conditions.ResultsHIV/TB co-infection induced significant changes to the host's lipid and protein metabolism, with additional microbial product translocation from the gut to the blood. The results suggest that HIV augments TB synergistically, at least in part, contributing to increased inflammation, oxidative stress, ART-induced mitochondrial damage, and its detrimental effects on gut health, which in turn, affects energy availability. ART reverses these trends to some extent in HIV/TB co-infected patients but not to that of healthy controls.ConclusionThis study generated several new hypotheses that could direct future metabolic studies, which could be combined with other research techniques or methodologies to further elucidate the underlying mechanisms of these changes.
Project description:IntroductionAmid the global health crisis, HIV/TB co-infection presents significant challenges, amplifying the burden on patients and healthcare systems alike. Metabolomics offers an innovative window into the metabolic disruptions caused by co-infection, potentially improving diagnosis and treatment monitoring.AimThis study uses untargeted metabolomics to investigate the urinary metabolic signature of HIV/TB co-infection, enhancing understanding of the metabolic interplay between these infections.MethodsUrine samples from South African adults, categorised into four groups - healthy controls, TB-positive, HIV-positive, and HIV/TB co-infected - were analysed using GCxGC-TOFMS. Metabolites showing significant differences among groups were identified through Kruskal-Wallis and Wilcoxon rank sum tests.ResultsVarious metabolites (n = 23) were modulated across the spectrum of health and disease states represented in the cohorts. The metabolomic profiles reflect a pronounced disruption in biochemical pathways involved in energy production, amino acid metabolism, gut microbiome, and the immune response, suggesting a bidirectional exacerbation between HIV and TB. While both diseases independently perturb the host's metabolism, their co-infection leads to a unique metabolic phenotype, indicative of an intricate interplay rather than a simple additive effect.ConclusionMetabolic profiling revealed a unique metabolic landscape shaped by HIV/TB co-infection. The findings highlight the potential of urinary differential metabolites for co-infection, offering a non-invasive tool for enhancing diagnostic precision and tailoring therapeutic interventions. Future research should focus on expanding sample sizes and integrating longitudinal analyses to build upon these foundational insights, paving the way for metabolomic applications in combating these concurrent pandemics.
Project description:BackgroundTB and HIV co-epidemic is a major public health problem in many parts of the world, particularly in developing counties. We aimed to summarize the prevalence of TB and HIV co-infection in mainland China, using meta-analysis based on systematic review of published articles.MethodsWe systematically reviewed published studies, from the MEDLINE and Chinese BioMedical Literature Databases, on the prevalence of HIV infection among TB patients and on the prevalence of TB among HIV/AIDS population until 15 April 2010, and quantitatively summarized the estimates using meta-analysis.ResultsIn total, 29 studies were included in this review, with consistently homogeneous results. TB patients, for whom the summary prevalence of HIV infection was 0.9% (0.6%-1.4%) in mainland China, were found to be a potential target population for HIV screening. The prevalence of TB among HIV/AIDS population was 7.2% (4.2%-12.3%), but this was much higher when the analyses were restricted to AIDS patients (22.8%). Significantly higher prevalence was observed for males and hospital-based studies.ConclusionsOur analyses indicated that the prevalence of HIV/TB co-infection in China deserves special attention, screening of TB among HIV/AIDS populations should be attached more importance, which would be much more helpful for treatment of both diseases.
Project description:Tuberculosis (TB) and Human Immunodeficiency Virus (HIV) infections have been identified to form a deadly synergy that is posing serious threats to human health and economic development particularly in Sub-Saharan Africa (SSA). Six years into the end TB strategy, it is imperative to assess HIV detection rate among TB patients in order to determine the prevalence as well as establish the temporal trend of the co-morbidity in the Eastern region of Ghana where the magnitude of HIV and TB/HIV co-morbidity have consistently been noted to be high. The study reviewed records of 840 TB patients retrospectively from January 1, 2009 to December 31, 2018 in Suhum Municipal. Socio-demographic characteristics and clinical data of study participants were extracted from the Municipal TB registers using an excel spread sheet. Data were exported into STATA version 16.0 for analysis with statistical significance set at p-value ≤0.05. Of the 840 TB patients, 793 (94.4%) were screened for HIV, with 18.6% (95% CI: 0.16-0.21) yielding positive results. A sharp increase in the trend of the co-infection was observed from 6 (14.6%) in 2009 to 21 (36.8%) in 2010. The highest (40.4%) co-infection prevalence was recorded in 2011. The study recorded an overall decreasing trend of the co-infection. Case detection rate for HIV among persons living with TB was high. TB/HIV co-infection rate in Suhum Municipal is high and occurs more often among females and persons aged 30 years to 49 years. A fairly stable prevalence trend of TB/HIV co-infection rate was also identified. In conclusion, ongoing integrated TB/HIV activities are showing good results and therefore need to be sustained.
Project description:BackgroundCurrent diagnostics are inadequate to meet the challenges presented by co-infection with Mycobacterium tuberculosis (Mtb) and HIV, the leading cause of death for HIV-infected individuals. Improved characterization of Mtb/HIV coinfection as a distinct disease state may lead to better identification and treatment of affected individuals.MethodsFour previously-published TB and HIV co-infection related datasets were used to train and validate multinomial machine learning classifiers that simultaneously predict TB and HIV status. Classifier predictive performance was measured using leave-one-out cross validation on the training set and blind predictive performance on multiple test sets using area under the ROC curve (AUC) as the performance metric. Linear modelling of signature gene expression was applied to systematically classify genes as TB-only, HIV-only or combined TB/HIV.ResultsThe optimal signature discovered was a 10-gene random forest multinomial signature that robustly discriminated active tuberculosis (TB) from other non-TB disease states with improved performance compared with previously published signatures (AUC: 0.87), and specifically discriminated active TB/HIV co-infection from all other conditions (AUC: 0.88). Signature genes exhibited a variety of transcriptional patterns including both TB-only and HIV-only response genes and genes with expression patterns driven by interactions between HIV and TB infection states, including the CD8+ T-cell receptor LAG3 and the apoptosis-related gene CERKL.ConclusionsBy explicitly including distinct disease states within the machine learning analysis framework, we developed a compact and highly diagnostic signature that simultaneously discriminates multiple disease states associated with Mtb/HIV co-infection. Examination of the expression patterns of signature genes suggests mechanisms underlying the unique inflammatory conditions associated with active TB in the presence of HIV. In particular, we observed that dysregulation of CD8+ effector T-cell and NK-cell associated genes may be an important feature of Mtb/HIV co-infection.
Project description:BackgroundIn Cape Town, the roll-out of antiretroviral therapy (ART) has increased over the last decade with an estimated coverage of 63% of HIV- positive patients in 2013. The influence of ART on the characteristics of the population of HIV-positive patients presenting to the primary care TB programme is unknown. In this study, we examined trends in CD4 count distribution, ART usage and treatment outcomes among HIV-positive TB patients in Cape Town from 2009 to 2013.MethodsData from the electronic TB register on all newly registered drug-sensitive TB patients ≥18 years were analyzed retrospectively. Descriptive statistics were used to compare baseline characteristics, the CD4 count distribution and TB treatment outcomes both by year of treatment and ART status at the start of TB treatment. Survival analyses were used to assess the change in mortality risk during TB treatment over time, stratified by ART status at start of TB treatment.Results118,989 patients were treated over 5 years. HIV prevalence among TB patients decreased from 50.9% in 2009 to 49.0% in 2013. The absolute number of HIV-positive TB cases declined by 13.2% between 2010 and 2013. More patients entered the TB programme on ART in 2013 compared to 2009 (30.0% vs 9.9%). Among these, the CD4 count distribution showed a year by year shift to higher CD4 counts. In 2013, over 75% of ART-naïve TB patients still had a CD4 count < 350 cells/mm3. ART initiation among ART-naive patients increased from 37.0 to 77.7% and TB case fatality declined from 7.4 to 5.2% (p < 0.001). In multivariate analysis a decrease in TB mortality was most strongly associated with CD4 count (Adjusted HR 0.82 per increase of 50 cells/mm3, 95% CI: 0.81-0.83, p < 001) and the initiation of ART during TB treatment (Adjusted HR 0.39, 95% CI: 0.35-0.42, p < 0.001).ConclusionComprehensive changes in the ART and TB treatment programmes resulted in incremental increases in ART coverage for HIV-positive TB patients and a subsequent decrease in TB case fatality due to increased ART uptake in HIV-positive ART-naïve patients. However TB still remained a major presenting opportunistic infection with the majority of cases occurring at low CD4 counts.
Project description:BackgroundAntiretroviral therapy (ART) for persons with HIV infection prevents tuberculosis (TB) disease. Additionally, sequential ART after initiation of TB treatment improves outcomes. We examined ART use, retention in care, and viral suppression (VS) before, during, and 3 years following TB treatment for an inner-city cohort in the United States.MethodsRetrospective cohort study among persons treated for culture-confirmed TB between 2008 and 2015 at an inner-city hospital.ResultsAmong 274 persons with culture-confirmed TB, 96 (35%) had HIV co-infection, including 23 (24%) new HIV diagnoses and 73 (76%) previous diagnoses. Among those with known HIV prior to TB, the median time of known HIV was 6 years, and only 10 (14%) were on ART at the time of TB diagnosis. The median CD4 at TB diagnosis was 87 cells/uL. Seventy-four (81%) patients received ART during treatment for TB, and 47 (52%) has VS at the end of TB treatment. Only 32% of patients had continuous VS 3 years after completing TB treatment. There were 3 TB recurrences and 3 deaths post-TB treatment; none of these patients had retention or VS after TB treatment.ConclusionsAmong persons with active TB co-infected with HIV, we found that the majority had known HIV and were not on ART prior to TB diagnosis, and retention in care and VS post-TB treatment were very low. Strengthening the HIV care continuum is needed to improve HIV outcomes and further reduce rates of active TB/HIV co-infection in our and similar settings.
Project description:Systemic immune activation is critical to the pathogenesis of HIV-1 disease, and is accentuated in HIV/TB co-infected patients. The contribution of immune activation at sites of HIV/TB co-infection to viral activity, CD4 T cell count, and productive HIV-1 infection remain unclear. In this study, we measured markers of immune activation both in pleural fluid and plasma, and in T cells in pleural fluid mononuclear cell (PFMC) and peripheral blood mononuclear cell (PBMC) in HIV/TB co-infected subjects. The relationship between soluble and T cell activation markers with viral load in pleural fluid and blood CD4 T cell count were assessed. The T cell phenotype and activation status of HIV-1 p24 + T cells in PFMC and PBMC from HIV/TB patients were determined. We found that T cell and macrophage-specific and non-specific soluble markers of immune activation, sCD27, sCD163, IL1Ra, and sCD14, were higher in pleural fluid as compared to plasma from HIV/TB co-infected subjects, and higher as compared to pleural fluid from TB mono-infected subjects. Intestinal fatty acid-binding protein, a marker of intestinal tract damage, in plasma from HIV/TB co-infected patients was not different than that in HIV+ subjects. Expression of HLADR and CD38 double positive (HLADR/CD38) on CD4 T cells, and CD69+ on CD8 T cells correlated with pleural fluid viral load, and inversely with blood CD4 T cell count. Higher expression of HLADR/CD38 and CCR5 on CD4 T cells, and HLADR/CD38 and CD69 on CD8 T cells in PFMC were limited to effector memory populations. HIV-1 p24+ CD8 negative (includes CD4 + and double negative T cells) effector memory T cells in PFMC had higher expression of HLADR/CD38, Ki67, and CCR5 compared to HIV-1 p24- CD8 negative PFMC. Cumulatively, these data indicate that sites of HIV/TB co-infection are the source of intense immune activation.
Project description:Tuberculosis (TB) remains a leading cause of mortality among individuals coinfected with HIV, characterized by progressive pulmonary inflammation. Despite TB's hallmark being focal granulomatous lung lesions, our understanding of the histopathological features and regulation of inflammation in HIV & TB coinfection remains incomplete. In this study, we aimed to elucidate these histopathological features through an immunohistochemistry analysis of HIV & TB co-infected and TB patients, revealing marked differences. Notably, HIV & TB granulomas exhibited aggregation of CD68 + macrophage (Mφ), while TB lesions predominantly featured aggregation of CD20+ B cells, highlighting distinct immune responses in coinfection. Spatial transcriptome profiling further elucidated CD68+ Mφ aggregation in HIV & TB, accompanied by activation of IL6 pathway, potentially exacerbating inflammation. Through multiplex immunostaining, we validated two granuloma types in HIV & TB versus three in TB, distinguished by cell architecture. Remarkably, in the two types of HIV & TB granulomas, CD68 + Mφ highly co-expressed IL6R/pSTAT3, contrasting TB granulomas' high IFNGRA/SOCS3 expression, indicating different signaling pathways at play. Thus, activation of IL6 pathway may intensify inflammation in HIV & TB-lungs, while SOCS3-enriched immune microenvironment suppresses IL6-induced over-inflammation in TB. These findings provide crucial insights into HIV & TB granuloma formation, shedding light on potential therapeutic targets, particularly for granulomatous pulmonary under HIV & TB co-infection. Our study emphasizes the importance of a comprehensive understanding of the immunopathogenesis of HIV & TB coinfection and suggests potential avenues for targeting IL6 signaling with SOCS3 activators or anti-IL6R agents to mitigate lung inflammation in HIV & TB coinfected individuals.