Project description:DBTMEE (http://dbtmee.hgc.jp/) is a searchable and browsable database designed to manipulate gene expression information from our ultralarge-scale whole-transcriptome analysis of mouse early embryos. Since integrative approaches with multiple public analytical data have become indispensable for studying embryogenesis due to technical challenges such as biological sample collection, we intend DBTMEE to be an integrated gateway for the research community. To do so, we combined the gene expression profile with various public resources. Thereby, users can extensively investigate molecular characteristics among totipotent, pluripotent and differentiated cells while taking genetic and epigenetic characteristics into consideration. We have also designed user friendly web interfaces that enable users to access the data quickly and easily. DBTMEE will help to promote our understanding of the enigmatic fertilization dynamics.
Project description:Understanding and harnessing cellular potency are fundamental in biology and are also critical to the future therapeutic use of stem cells. Transcriptome analysis of these pluripotent cells is a first step towards such goals. Starting with sources that include oocytes, blastocysts, and embryonic and adult stem cells, we obtained 249,200 high-quality EST sequences and clustered them with public sequences to produce an index of approximately 30,000 total mouse genes that includes 977 previously unidentified genes. Analysis of gene expression levels by EST frequency identifies genes that characterize preimplantation embryos, embryonic stem cells, and adult stem cells, thus providing potential markers as well as clues to the functional features of these cells. Principal component analysis identified a set of 88 genes whose average expression levels decrease from oocytes to blastocysts, stem cells, postimplantation embryos, and finally to newborn tissues. This can be a first step towards a possible definition of a molecular scale of cellular potency. The sequences and cDNA clones recovered in this work provide a comprehensive resource for genes functioning in early mouse embryos and stem cells. The nonrestricted community access to the resource can accelerate a wide range of research, particularly in reproductive and regenerative medicine.
Project description:Development of the embryonic palate requires that the palatal shelves (PS), which extend from maxillary processes, to grow bilaterally and vertically alongside the tongue. This growth continues until embryonic day (E) 13.5, after which the PS elevate above the tongue and adhere, completing the process by E14.5. Current models indicate that this elevation process involves a complex vertical-to-horizontal PS reorientation. While earlier studies have implied that reorientation occurs rapidly, the precise timing has not been resolved. Time-restricted pregnancies with a 1-h resolution showed that in 97% of C57BL/6J embryos, the PS were unelevated at E14.0. However, 6 h later, at E14.25, the PS had completed elevation in 80% of embryos, indicating that the PS elevate in a rapid and constrained timeframe. Interestingly, all E14.25 embryos with unelevated PS (20%) were female, suggesting sex differences in C57BL/6J PS elevation. In FVB/NJ embryos, the elevation window started earlier (E13.875-E14.25), and without any sex differences. An intermediate stage with unilateral PS elevation was frequently observed. Magnetic resonance imaging (MRI) of various stages showed that PS elevation began with posterior bilateral bulges, which then progressed laterally and anteriorly over time. During elevation, we observed increased cell proliferation in the PS lingual region. Within the bulge, cell orientation was tilted towards the tongue, and actomyosin activity was increased, which together may participate in horizontal projection of the bulge. Thus, our data reveal novel insights into rapid dynamic changes during PS elevation, and lay the foundation for future studies of normal and abnormal palatogenesis.
Project description:Following fertilization in mammals, paternal genomic 5-methyl-2'-deoxycytidine (5 mC) content is thought to decrease via oxidation to 5-hydroxymethyl-2'-deoxycytidine (5 hmC). This reciprocal model of demethylation and hydroxymethylation is inferred from indirect, non-quantitative methods. We here report direct quantification of genomic 5 mC and 5 hmC in mouse embryos by small scale liquid chromatographic tandem mass spectrometry (SMM). Profiles of absolute 5 mC levels in embryos produced by in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) were almost identical. By 10 h after fertilization, 5 mC levels had declined by ~40%, consistent with active genomic DNA demethylation. Levels of 5 mC in androgenotes (containing only a paternal genome) and parthenogenotes (containing only a maternal genome) underwent active 5 mC loss in the first 6 h, showing that both parental genomes can undergo demethylation independently. We found no evidence for net loss of 5 mC 10-48 h after fertilization, implying that any passive 'demethylation' following DNA replication was balanced by active 5 mC maintenance methylation. However, levels of 5 mC declined during development after 48 h, to 1% (measured as a fraction of G-residues) in blastocysts (~96 h). 5 hmC levels were consistently low (<0.2% of G-residues) throughout development in normal diploid embryos. This work directly quantifies the dynamics of global genomic DNA modification in mouse preimplantation embryos, suggesting that SMM will be applicable to other biomedical situations with limiting sample sizes.
Project description:The mouse Otx2 gene is a homeobox transcription factor required as early as gastrulation for the proper development of the head. We compared gene expression profiles in wild-type and Otx2(-/-) 6.5 days postcoitum embryos by using a serial analysis of gene expression assay adapted to microdissected structures. Among a broader list, the study of six genes found to be differentially expressed allows defining a role for Otx2 in the orchestration of cell movements leading to the adequate organization of the embryo before gastrulation.
Project description:Dicer, which is required for the processing of both microRNAs (miRNAs) and small interfering RNAs (siRNAs), is essential for oocyte maturation [1, 2]. Oocytes express both miRNAs and endogenous siRNAs (endo-siRNAs) [3, 4]. To determine whether the abnormalities in Dicer knockout oocytes during meiotic maturation are secondary to the loss of endo-siRNAs and/or miRNAs, we deleted Dgcr8, which encodes an RNA-binding protein specifically required for miRNA processing. In striking contrast to Dicer, Dgcr8-deficient oocytes matured normally and, when fertilized with wild-type sperm, produced healthy-appearing offspring, even though miRNA levels were reduced to similar levels as Dicer-deficient oocytes. Furthermore, the deletion of both maternal and zygotic Dgcr8 alleles did not impair preimplantation development, including the determination of the inner cell mass and trophectoderm. Most surprisingly, the mRNA profiles of wild-type and Dgcr8 null oocytes were essentially identical, whereas Dicer null oocytes showed hundreds of misregulated transcripts. These findings show that miRNA function is globally suppressed during oocyte maturation and preimplantation development and that endo-siRNAs, rather than miRNAs, underlie the Dicer knockout phenotype in oocytes.
Project description:The recent discovery of a significant amount of RNA in spermatozoa contradicted the previously held belief that paternal contribution was limited to one copy of the genome. Furthermore, detection of RNA in sperm raised the intriguing question of its possible role in embryonic development. The possibility that RNAs may serve as epigenetic determinants was supported by experiments showing inheritance of epigenetic traits in mice mediated by RNA. We used high-throughput, large-scale sequencing technology to analyze sperm RNA. The RNA sequences generated were diverse in terms of length and included mRNAs, rRNAs, piRNAs, and miRNAs. We studied two small noncoding RNAs enriched in mature sperm, designated sperm RNAs (spR) -12 and -13. They are both encoded in a piRNA locus on chromosome 17, but neither their length (20-21 nt), nor their sequences correspond to known piRNAs or miRNAs. They are resistant to periodate-oxidation-mediated reaction, implying that they undergo terminal post-transcriptional modification. Both were detected in sperm and ovulated unfertilized oocytes, present in one-cell embryos and maintained in preimplantation stages, but not at later differentiation stages. These findings offer a new perspective regarding a possibly important role for gamete-specific small RNAs in early embryogenesis.
Project description:Kit is a growth factor receptor that regulates proliferation and/or survival of many embryonic and postnatal stem cell types. When mutated, it can induce malignant transformation of the host cells. To dissect the Kit role in the control of ESC pluripotency, we studied its expression during early mouse embryogenesis and during the process of ESC derivation from inner cell mass (ICM) cells. We followed the in vitro development of early mouse embryos obtained from transgenic mice carrying Kit promoter regions fused to EGFP (Kit-EGFP) and found that they initiate EGFP expression at morula stage. EGFP expression is then maintained in the blastocyst, within the ICM, and its levels increase when cultured in the presence of MAPK and GSK3β inhibitors (2i) plus LIF compared with the LIF-only condition. Kit-EGFP ESCs showed nonhomogeneous EGFP expression pattern when cultured in LIF condition, but they upregulated EGFP expression, as well as that of Sox2, Nanog, Prdm14, when shifted to 2i-LIF culture. Similarly, primordial germ cells (PGCs) in the process of embryonic germ cell (EGC) conversion showed enhanced EGFP expression in 2i-LIF. Kit expression was affected by manipulating Sox2 levels in ESCs. Chromatin immunoprecipitation experiments confirmed that Sox2 binds Kit regulatory regions containing Sox2 consensus sequences. Finally, Kit constitutive activation induced by the D814Y mutation increased ESC proliferation and cloning efficiency in vitro and in teratoma assays in vivo. Our results identify Kit as a pluripotency-responsive gene and suggest a role for Kit in the regulation of ESC proliferation. Stem Cells 2019;37:332-344.
Project description:High quality label-free imaging of oocytes and early embryos is essential for accurate assessment of their developmental potential, a key element of assisted reproduction procedures. To achieve this goal, we propose full-field optical coherence microscopy (FF-OCM), constructed as a compact module fully integrated with a commercial wide-field fluorescence microscope. Our system achieves optical sectioning in wide-field, high in-plane resolution of 0.5 µm, and high sensitivity to backscattered light. To demonstrate its imaging capabilities, we study live mouse oocytes and embryos at all important stages of meiotic maturation and early embryogenesis. Our system enables visualization of intracellular structures, which are not visible in common bright-field microscopy, i.e., internal structure of nuclear apparatus, cytoskeletal filaments, cellular cortex, cytoplasmic protrusions, or zona pellucida features. Additionally, we visualize and quantify intracellular dynamics like cytoplasmic stirring motion, nuclear envelope fluctuations and nucleolus mobility. Altogether, we demonstrate that FF-OCM is a powerful tool for research in developmental biology that also holds great potential for non-invasive time-lapse monitoring of oocyte and embryo quality in assisted reproduction.
Project description:Polycomb repressive complexes 1 and 2 (PRC1/2) maintain transcriptional silencing of developmental genes largely by catalyzing the formation of mono-ubiquitinated histone H2A at lysine 119 (H2AK119ub1) and trimethylated histone H3 at lysine 27 (H3K27me3), respectively. How Polycomb domains are reprogrammed during mammalian preimplantation development remains largely unclear. Here we show that, although H2AK119ub1 and H3K27me3 are highly colocalized in gametes, they undergo differential reprogramming dynamics following fertilization. H3K27me3 maintains thousands of maternally biased domains until the blastocyst stage, whereas maternally biased H2AK119ub1 distribution in zygotes is largely equalized at the two-cell stage. Notably, while maternal PRC2 depletion has a limited effect on global H2AK119ub1 in early embryos, it disrupts allelic H2AK119ub1 at H3K27me3 imprinting loci including Xist. By contrast, acute H2AK119ub1 depletion in zygotes does not affect H3K27me3 imprinting maintenance, at least by the four-cell stage. Importantly, loss of H2AK119ub1, but not H3K27me3, causes premature activation of developmental genes during zygotic genome activation (ZGA) and subsequent embryonic arrest. Thus, our study reveals distinct dynamics and functions of H3K27me3 and H2AK119ub1 in mouse preimplantation embryos.