Expression data from glioblastoma cells after ZFHX4 or CHD4 suppression
Ontology highlight
ABSTRACT: ZFHX4 and CHD4 suppression independently shift tumor initiating cells out of a stem like state and toward a differentiated morphology. After gene suppression via transduction of a lentivirally mediated shRNA construct, RNA was extracted 3 and 5 days later and was hybridized on Affymetrix microarrays. Total RNA was extracted 3 and 5 days after shRNA transduction of 0308 TICs, for 3 (for CHD4) or 5 (ZFHX4) independent experiments. Complementary RNA synthesis and hybridization/scanning of U133 plus 2.0 microarrays using GeneChip products (Affymetrix) was done as described in the GeneChip manual.
Project description:ZFHX4 and CHD4 suppression independently shift tumor initiating cells out of a stem like state and toward a differentiated morphology. After gene suppression via transduction of a lentivirally mediated shRNA construct, RNA was extracted 3 and 5 days later and was hybridized on Affymetrix microarrays. Total RNA was extracted 3 and 5 days after shRNA transduction of 0308 TICs, for 3 (for CHD4) or 5 (ZFHX4) independent experiments. Complementary RNA synthesis and hybridization/scanning of U133 plus 2.0 microarrays using GeneChip products (Affymetrix) was done as described in the GeneChip manual.
Project description:ZFHX4 and CHD4 suppression independently shift tumor initiating cells out of a stem like state and toward a differentiated morphology. After gene suppression via transduction of a lentivirally mediated shRNA construct, RNA was extracted 3 and 5 days later and was hybridized on Affymetrix microarrays.
Project description:Tumors contain hostile inflammatory signals generated by aberrant proliferation, necrosis, and hypoxia. These signals are sensed and acted upon acutely by the Toll-like receptors (TLRs) to halt proliferation and activate an immune response. Despite the presence of TLR ligands within the microenvironment, tumors progress, and the mechanisms that permit this growth remain largely unknown. We report that self-renewing cancer stem cells (CSCs) in glioblastoma have low TLR4 expression that allows them to survive by disregarding inflammatory signals. Non-CSCs express high levels of TLR4 and respond to ligands. TLR4 signaling suppresses CSC properties by reducing retinoblastoma binding protein 5 (RBBP5), which is elevated in CSCs. RBBP5 activates core stem cell transcription factors, is necessary and sufficient for self-renewal, and is suppressed by TLR4 overexpression in CSCs. Our findings provide a mechanism through which CSCs persist in hostile environments because of an inability to respond to inflammatory signals.
Project description:Anoctamin-1 (ANO1) acts as a Ca(2+)-activated Cl(-) channel in various normal tissues, and its expression is increased in several different types of cancer. Therefore, understanding the regulation of ANO1 surface expression is important for determining its physiological and pathophysiological functions. However, the trafficking mechanism of ANO1 remains elusive. Here, we report that segment a (N-terminal 116 amino acids) of ANO1 is crucial for its surface expression, and we identified 14-3-3γ as a binding partner for anterograde trafficking using yeast two-hybrid screening. The surface expression of ANO1 was enhanced by 14-3-3γ, and the Thr9 residue of ANO1 was critical for its interaction with 14-3-3γ. Gene silencing of 14-3-3γ and/or ANO1 demonstrated that suppression of ANO1 surface expression inhibited migration and invasion of glioblastoma cells. These findings provide novel therapeutic implications for glioblastomas, which are associated with poor prognosis.
Project description:Glioblastoma is the most common brain tumor in adults in which recurrence has been attributed to the presence of cancer stem cells in a hypoxic microenvironment. On the basis of tumor formation in vivo and growth type in vitro, two published microarray gene expression profiling studies grouped nine glioblastoma stem-like (GS) cell lines into one of two groups: full (GSf) or restricted (GSr) stem-like phenotypes. Aquaporin-1 (AQP1) and aquaporin-4 (AQP4) are water transport proteins that are highly expressed in primary glial-derived tumors. However, the expression levels of AQP1 and AQP4 have not been previously described in a panel of 92 glioma samples. Therefore, we designed secondary data analytics methods to determine the expression levels of AQP1 and AQP4 in GS cell lines and glioblastoma neurospheres. Our investigation also included a total of 2,566 expression levels from 28 Affymetrix microarray probe sets encoding 13 human aquaporins (AQP0-AQP12); CXCR4 (the receptor for stromal cell derived factor-1 [SDF-1], a potential glioma stem cell therapeutic target]); and PROM1 (gene encoding CD133, the widely used glioma stem cell marker). Interactive visual representation designs for integrating phenotypic features and expression levels revealed that inverse expression levels of AQP1 and AQP4 correlate with distinct phenotypes in a set of cell lines grouped into full and restricted stem-like phenotypes. Discriminant function analysis further revealed that AQP1 and AQP4 expression are better predictors for tumor formation and growth types in glioblastoma stem-like cells than are CXCR4 and PROM1. Future investigations are needed to characterize the molecular mechanisms for inverse expression levels of AQP1 and AQP4 in the glioblastoma stem-like neurospheres.
Project description:Glioblastoma (GBM) is the most common and aggressive malignant tumor in adult brain. Even with the current standard therapy including surgical resection followed by postoperative radiotherapy and chemotherapy with temozolomide (Temo), GBM patients still have a poor median survival. Reprogramming of tumor cells into non-malignant cells might be a promising therapeutic strategy for malignant tumors, including GBM. Based on previous studies using small molecules to reprogram astrocytes into neuronal cells, here we further identified a FTT cocktail of three commonly used drugs (Fasudil, Tranilast, and Temo) to reprogram patient-derived GBM cells, either cultured in serum containing or serum-free medium, into neuronal like cells. FTT-treated GBM cells displayed a neuronal like morphology, expressed neuronal genes, exhibited neuronal electrophysiological properties, and showed attenuated malignancy. More importantly, FTT cocktail more significantly suppressed tumor growth and prolonged survival in GBM patient derived xenograft than Temo alone. Our study provided preclinical evidence that the neuronal reprogramming drug cocktail might be a promising strategy to improve the existing treatment for GBM.
Project description:Glioblastoma (GBM) is an incurable brain tumor carrying a dismal prognosis, which displays considerable heterogeneity. We have recently identified recurrent H3F3A mutations affecting two critical positions of histone H3.3 (K27, G34) in one-third of pediatric GBM. Here we show that each of these H3F3A mutations defines an epigenetic subgroup of GBM with a distinct global methylation pattern, and are mutually exclusive with IDH1 mutation (characterizing a CpG-Island Methylator Phenotype (CIMP) subgroup). Three further epigenetic subgroups were enriched for hallmark genetic events of adult GBM (EGFR amplification, CDKN2A/B deletion) and/or known transcriptomic signatures. We also demonstrate that the two H3F3A mutations give rise to GBMs in separate anatomic compartments, with differential regulation of OLIG1/2 and FOXG1, possibly reflecting different cellular origins. To further dissect the biological differences between epigenetic glioblastoma subgroups, we looked at the transcriptomic profiles of glioblastoma samples. 46 glioblastoma samples from patients of various ages were selected for RNA extraction and hybridization on Affymetrix Affymetrix Human Genome U133 Plus 2.0 Arrays.
Project description:Gene expression profiling revealed over-representation of a distinct (proneural-like) expression signature in long-term survivors that was linked to IDH1/2 mutation. However, among the IDH1/2-wildtype patients, tumors from long-term survivors did not show distinct gene expression profiles and included proneural, classical and mesenchymal glioblastoma subtypes. We performed genome- and/or transcriptome-wide molecular profiling of primary tumor samples from 70 glioblastoma patients of the German Glioma Network, including 23 longterm survivors with >36 months overall survival (OS), 16 short-term survivors with <12 months OS, and 31 patients with intermediate OS For this study, we screened prospectively recruited patients with a histopathological reference diagnosis of glioblastoma, known KPS at diagnosis, information on extent of resection by early postoperative neuroimaging, available frozen tissue specimens from the initial operation, and documented clinical outcome.
Project description:Comparison of treatment sensitive GSC clones (TSGC) with treatment resistant GSC clones (TRGC). We used microarrays to identify molecular signatures of TRGC (upregulated genes). We used radiation treatment (RT) or RT plus TMZ to select treatment resistant GSC clones (TRGC)
Project description:Glioblastoma Multiforme (GBM) is the most frequent and lethal primary brain cancer. Due to its therapeutic resistance and aggressiveness, its clinical management is challenging. Platelet-derived Growth Factor (PDGF) genes have been enrolled as drivers of this tumour progression as well as potential therapeutic targets. As detailed understanding of the expression pattern of PDGF system in the context of GBM intra- and intertumoral heterogeneity is lacking in the literature, this study aims at characterising PDGF expression in different histologically-defined GBM regions as well as investigating correlation of these genes expression with parameters related to poor prognosis. Z-score normalised expression values of PDGF subunits from multiple slices of 36 GBMs, alongside with clinical and genomic data on those GBMs patients, were compiled from Ivy Glioblastoma Atlas Project - Allen Institute for Brain Science data sets. PDGF subunits show differential expression over distinct regions of GBM and PDGF family is heterogeneously expressed among different brain lobes affected by GBM. Further, PDGF family expression correlates with bad prognosis factors: age at GBM diagnosis, Phosphatase and Tensin Homolog deletion and Isocitrate Dehydrogenase 1 mutation. These findings may aid on clinical management of GBM and development of targeted curative therapies against this devastating tumour.