Prognostic role of FGFR1 amplification in early-stage non-small cell lung cancer.
Ontology highlight
ABSTRACT: BACKGROUND: Recently, fibroblast growth factor receptor 1 (FGFR1) was discovered in squamous cell carcinomas (SCC) of the lung with FGFR1 amplification described as a promising predictive marker for anti-FGFR inhibitor treatment. Only few data are available regarding prevalence, prognostic significance and clinico-pathological characteristics of FGFR1-amplified and early-stage non-small cell lung carcinomas (NSCLC). We therefore investigated the FGFR1 gene status in a large number of well-characterised early-stage NSCLC. METHODS: FGFR1 gene status was evaluated using a commercially available fluorescent in situ hybridisation (FISH) probe on a tissue microarray (TMA). This TMA harbours 329 resected, formalin-fixed and paraffin-embedded, nodal-negative NSCLC with a UICC stage I-II. The FISH results were correlated with clinico-pathological features and overall survival (OS). RESULTS: The prevalence of an FGFR1 amplification was 12.5% (41/329) and was significantly (P<0.0001) higher in squamous cell carcinoma (SCC) (20.7%) than in adenocarcinoma (2.2%) and large cell carcinoma (13%). Multivariate analysis revealed significantly (P=0.0367) worse 5-year OS in patients with an FGFR1-amplified NSCLC. CONCLUSIONS: FGFR1 amplification is common in early-stage SCC of the lung and is an independent and adverse prognostic marker. Its potential role as a predictive marker for targeted therapies or adjuvant treatment needs further investigation.
Project description:Non-small cell lung cancer (NSCLC) is the primary cause of cancer-related death worldwide, with a low 5-year survival rate even in fully resected early-stage disease. Novel biomarkers to identify patients at higher risk of relapse are needed. We studied the prognostic value of 84 circulating microRNAs (miRNAs) in 182 patients with resected early-stage NSCLC (99 adenocarcinoma (ADC), 83 squamous cell carcinoma (SCC)) from whom peripheral blood samples were collected pre-surgery. miRNA expression was analyzed in relation to disease-free survival (DFS) and overall survival (OS). In univariable analyses, five miRNAs (miR-26a-5p, miR-126-3p, miR-130b-3p, miR-205-5p, and miR-21-5p) were significantly associated with DFS in SCC, and four (miR-130b-3p, miR-26a-5p, miR-126-3p, and miR-205-5p) remained significantly associated with OS. In ADC, miR-222-3p, miR-22-3p, and mir-93-5p were significantly associated with DFS, miR-22-3p remaining significant for OS. Given the high-dimensionality of the dataset, multivariable models were obtained using a regularized Cox regression including all miRNAs and clinical covariates. After adjustment for disease stage, only miR-126-3p showed an independent prognostic role, with higher values associated with longer DFS in SCC patients. With regard to ADC and OS, no miRNA remained significant in multivariable analysis. Further investigation into the role of miR-126 as a prognostic marker in early-stage NSCLC is warranted.
Project description:BackgroundSquamous cell lung carcinomas account for approximately 25% of new lung carcinoma cases and 40,000 deaths per year in the United States. Although there are multiple genomically targeted therapies for lung adenocarcinoma, none has yet been reported in squamous cell lung carcinoma.Methodology/principal findingsUsing SNP array analysis, we found that a region of chromosome segment 8p11-12 containing three genes-WHSC1L1, LETM2, and FGFR1-is amplified in 3% of lung adenocarcinomas and 21% of squamous cell lung carcinomas. Furthermore, we demonstrated that a non-small cell lung carcinoma cell line harboring focal amplification of FGFR1 is dependent on FGFR1 activity for cell growth, as treatment of this cell line either with FGFR1-specific shRNAs or with FGFR small molecule enzymatic inhibitors leads to cell growth inhibition.Conclusions/significanceThese studies show that FGFR1 amplification is common in squamous cell lung cancer, and that FGFR1 may represent a promising therapeutic target in non-small cell lung cancer.
Project description:BackgroundTo date, no combined immunoscore has been evaluated for prognostic stratification of early stage non-small-cell lung cancer (NSCLC). The main goal of this study was to investigate the prognostic impact of programmed death ligand 1 (PD-L1) expression and different immune cell components (CD4+, CD8+ T-lymphocytes, and CD68+ macrophages) in early stage NSCLC patients, distinguishing peritumoral (PT) and intratumoral (IT) localizations. The secondary aim was to identify a combined immunoscore to optimize the prognostic stratification of NSCLC patients.MethodsThis retrospective study included surgical specimens from consecutive chemo-naive stage II-III radically resected NSCLC patients. Immunohistochemistry was carried out to evaluate PD-L1 expression and to quantify IT and PT CD4+, CD8+ T-lymphocytes, and CD68+ macrophages. The impact of a single marker and of a combination of multiple markers on overall survival (OS) was investigated.ResultsSeventy-nine patients were included in the study. PD-L1 expression was associated with worse prognosis (3 years OS: 58% in high- compared with 67% in low-expressing tumors), even though without statistical significance. When integrating PT CD8+, CD4+, and CD68 into a combined PT immunoscore, a significant prognostic stratification of patients was obtained and confirmed at multivariate analysis (3 years OS: 86% in patients with low PT immunoscore vs. 59% in patients with high PT immunoscore, p = 0.018). The integration of derived neutrophil/lymphocyte ratio (dNLR) with combined PT immunoscore improved prognostic stratification, with longer OS in patients with low PT immunoscore and low dNLR (p = 0.002).ConclusionThe combined PT immunoscore (CD8+, CD4+, and CD68) integrated with dNLR may be a promising marker for the development of an integrated Tumor, Node, Metastasis (TNM) immunoscore.
Project description:Lung tumors represent a major health problem. In early stage NSCLC tumors, surgical resection is the preferred treatment, but 30-55% of patients will relapse within 5 years after surgery. Thus, the identification of prognostic biomarkers in early stage NSCLC patients, especially those which are therapeutically addressable, is crucial to enhance survival of these patients. We determined the immunohistochemistry expression of key proteins involved in tumorigenesis and oncogenic signaling, p53, EGFR, pAKT and pERK, and correlated their expression level to clinicopathological characteristics and patient outcome. We found EGFR expression is higher in the squamous cell carcinomas than in adenocarcinomas (p=0.043), and that nuclear p53 staining correlated with lower differentiated squamous tumors (p=0.034). Regarding the prognostic potential of the expression of these proteins, high pERK levels proved to be an independent prognostic factor for overall (p<0.001) and progression-free survival (p<0.001) in adenocarcinoma patients, but not in those from the squamous histology, and high p53 nuclear levels were identified as independent prognostic factor for progression-free survival (p=0.031) only in squamous cell carcinoma patients. We propose a role as early prognostic biomarkers for pERK protein levels in adenocarcinoma, and for nuclear p53 levels in squamous cell lung carcinoma. The determination of these potential biomarkers in the adequate histologic context may predict the outcome of early stage NSCLC patients, and may offer a therapeutic opportunity to enhance survival of these patients.
Project description:This study aimed to determine protein expression levels of fibroblast growth factor receptors (FGFR) 1, 2 and 3 in early stage non-small cell lung cancer (NSCLC). Additionally, a screen to define the frequency of FGFR3-TACC3 translocation and FGFR3 amplification was performed. Archived tissues from 653 NSCLC samples (adenocarcinoma (AC), squamous cell carcinoma (SCC) and large cell carcinoma (LCC)) were analysed with immunohistochemistry (IHC) for expression of FGFR1, 2 and 3. Expression levels of FGFR1, 2 and 3 were correlated with clinicopathological features. The presence of FGFR3-TACC3 translocation was detected by RT-PCR and FGFR3 amplification was detected by fluorescence in situ hybridization. FGFR1, 2 and 3 proteins were highly expressed in 64 (10.6%), 76 (12.9%) and 20 (3.3%) NSCLC tumour samples, respectively. Protein expression of FGFR1 was significantly related to worse overall survival in NSCLC. Furthermore, FGFR1 protein expression was associated with light smoking and histological subtype (AC), FGFR2 protein expression with female gender, younger age, histological subtype (AC) and lower tumour stage, and FGFR3 protein was significantly overexpressed in tumours of older patients and SCC histology. The FGFR3-TACC3 fusion was detected in 3.0% (6/200) of NSCLC samples and the FGFR3 gene was amplified in 4.7% of IHC positive NSCLC samples (2/43). FGFR1, 2 and 3 proteins are expressed in a high number of early stage NSCLC and FGFR1 protein expression may serve as a prognostic biomarker. Recurrent translocations and amplifications in FGFR3 can be found in NSCLC. This study shows that FGFR family members are frequently aberrant in NSCLC and could be interesting therapeutic targets for the treatment of NSCLC.
Project description:Background: The current staging system is imprecise for prognostic prediction of early-stage non-small cell lung cancer (NSCLC). This study aimed to develop a robust prognostic signature for early-stage NSCLC, allowing classification of patients with a high risk of poor outcome and specific treatment decision. Method: In the present study, a comprehensive genome-wide profiling analysis was conducted using a retrospective pool of early-stage NSCLC patient data from the previous datasets of Gene Expression Omnibus (GEO) including GSE31210, GSE37745, and GSE50081 and The Cancer Genome Atlas (TCGA). Cox proportional hazards models were implemented to determine the association between gene expression levels and overall patient survival in each dataset. The common genes among all datasets were selected as candidate prognostic genes. A risk score model was developed and validated using four independent datasets and the entire cohort. The Kaplan-Meier with log-rank test was used to assess survival difference. Results: A univariate Cox proportional hazards regression analysis for each dataset showed that a total of 2280 genes in GSE31210, 762 genes in GSE37745, 871 genes in GSE50081, and 666 genes in TCGA were identified as candidate protective genes, while overall 2131 genes in GSE31210, 913 in GSE37745, 1107 in GSE50081, and 997 in TCGA were identified as candidate risky genes. There were 8 common genes associated with overall survival, including 7 mRNA and 1 lncRNA. By using the Step-wise multivariate Cox analysis, an 8-gene prognostic signature (CDCP1, HMMR, TPX2, CIRBP, HLF, KBTBD7, SEC24B-AS1, and SH2B1) for early-stage NSCLC was developed. Patients in the high-risk group had shorter overall survival than those in the low-risk group. Multivariate regression and stratified analysis suggested that the prognostic power of the 8-gene signature was independent of other clinical factors. Furthermore, the 8-gene signature achieved AUC values of 0.726, 0.701, 0.725 and 0.650 in GSE31210, GSE37745, GSE50081 and TCGA, respectively. Moreover, the combination of the 8-gene signature and the stage resulted to a better patient classification for survival prediction and treatment decision. Conclusion: This study developed a robust gene signature with great value for prognostic prediction in early-stage NSCLC, which may contribute to patient classification and personalized treatment decisions.
Project description:BackgroundLaminin gamma2 (Ln-γ2) chain, a distinctive subunit of heterotrimeric laminin-332, is frequently upregulated in carcinomas and is of great importance in cell migration and invasion. Despite this, the status of circulating Ln-γ2 in lung cancer patients is still uncertain.Patients and methodsIn this retrospective study, serum samples from 538 all-stage (stages I-IV) patients with non-small-cell lung cancer (NSCLC) and 94 age-matched healthy volunteers were investigated by enzyme-linked immunosorbent assay. Data were statistically analyzed in combination with clinicopathological information.ResultsCirculating Ln-γ2 was markedly increased in NSCLC, even in stage I cases (P<0.01), reflecting the progression of lung cancer. Survival analysis on 370 eligible patients indicated that serum Ln-γ2-negative patients survived much longer compared with Ln-γ2-positive individuals (P=0.028), and it was especially the case for stage I (P<0.001), stage T1 (P=0.001), and stage N0 patients (P=0.038), all of whom represented early-stage cases. For the advanced patients, however, overall survivals were not significantly different among stages II-IV (P=0.830), stages T2-T4 (P=0.575), stages N1-N3 (P=0.669), and stage M1 (P=0.849). Cox analysis subsequently defined serum Ln-γ2 as an independent prognostic indicator of NSCLC, particularly for early-stage patients. Furthermore, we demonstrated the association of serum Ln-γ2 with smoking behavior, but its association with tumor progression and early prognostic significance were not altered in the nonsmoking cohort.ConclusionOur study demonstrated that elevation of circulating Ln-γ2 was an early-emerging event in NSCLC and was significantly associated with poor prognosis in NSCLC, especially for early-stage cases.
Project description:(1) Background: Chromatin structure typing has been used for prognostic risk stratification among cancer survivors. This study aimed to ascertain the prognostic values of ploidy, nucleotyping, and tumor-stroma ratio (TSR) in predicting disease progression for patients with early-stage non-small cell lung cancer (NSCLC), and to explore whether patients with different nucleotyping profiles can benefit from adjuvant chemotherapy. (2) Methods: DNA ploidy, nucleotyping, and TSR were measured by chromatin structure typing analysis (Matrix Analyser, Room4, Kent, UK). Cox proportional hazard regression models were used to assess the relationships of DNA ploidy, nucleotyping, and TSR with a 5-year disease-free survival (DFS). (3) Results: among 154 early-stage NSCLC patients, 102 were non-diploid, 40 had chromatin heterogeneity, and 126 had a low stroma fraction, respectively. Univariable analysis suggested that non-diploidy was associated with a significantly lower 5-year DFS rate. After combining DNA ploidy and nucleotyping for risk stratification and adjusting for potential confounders, the DNA ploidy and nucleotyping (PN) high-risk group and PN medium-risk group had a 4- (95% CI: 1.497-8.754) and 3-fold (95% CI: 1.196-6.380) increase in the risk of disease progression or mortality within 5 years of follow-up, respectively, compared to the PN low-risk group. In PN high-risk patients, adjuvant therapy was associated with a significantly improved 5-year DFS (HR = 0.214, 95% CI: 0.048-0.957, p = 0.027). (4) Conclusions: the non-diploid DNA status and the combination of ploidy and nucleotyping can be useful prognostic indicators to predict long-term outcomes in early-stage NSCLC patients. Additionally, NSCLC patients with non-diploidy and chromatin homogenous status may benefit from adjuvant therapy.
Project description:IntroductionThe role of specific immune cell types within the tumor immune microenvironment in non-small cell lung cancer survival is unclear. The potential of these immune cells to become predictive biomarkers of prognosis, and to define subpopulations who will benefit of additional treatment is urgently needed.MethodsStage I to IIIA non-small cell lung cancer patients who underwent surgical resection were queried from the Cancer Genome Atlas; RNAseq data as well as clinical information was extracted. Sample-specific scores for different immune cells were computed via xCell. The association between each cell type and survival was assessed with Cox regression, both unadjusted and adjusted for sex, stage, smoking status, and tumor purity. Models were stratified by lung adenocarcinoma and lung squamous cell carcinoma.ResultsThere were 383 lung adenocarcinoma and 328 lung squamous cell carcinoma samples, and 161 (42%) and 124 (38%) deaths respectively. There was no association between any immune cell infiltrations and survival in the combined unadjusted Cox regression model. After adjustment, the presence of CD8+ cytotoxic T cells (adjusted hazard ratio [HRajd]: 0.84; 95% confidence interval [CI]: 0.71-0.99; P=0.03), CD4+ helper T cells (HRajd: 0.79; 95% CI: 0.66-0.95; P=0.01) and CD20+ B cells (HRajd: 0.80; 95% CI: 0.66-0.97; P=0.02) were significant predictors of decreased risk of death.ConclusionsThis study shows that the adjustment for clinical characteristics is key when evaluating tumor immune infiltration and its association with cancer outcomes. Adjustment for confounding factors modified the prognostic significance of specific immune cell populations in early-stage surgically resected NSCLC cases; clinical attributes may have high relevance on immune infiltration composition.
Project description:BackgroundThe correlation between the preoperative splenic area measured on CT scans and the overall survival (OS) of early-stage non-small cell lung cancer (NSCLC) patients remains unclear.MethodsA retrospective discovery cohort and validation cohort consisting of consecutive NSCLC patients who underwent resection and preoperative CT scans were created. The patients were divided into two groups based on the measurement of their preoperative splenic area: normal and abnormal. The Cox proportional hazard model was used to analyse the correlation between splenic area and OS.ResultsThe discovery and validation cohorts included 2532 patients (1374 (54.27%) males; median (IQR) age 59 (52-66) years) and 608 patients (403 (66.28%) males; age 69 (62-76) years), respectively. Patients with a normal splenic area had a 6% higher 5-year OS (n = 727 (80%)) than patients with an abnormal splenic area (n = 1805 (74%)) (p = 0.007) in the discovery cohort. A similar result was obtained in the validation cohort. In the univariable analysis, the OS hazard ratios (HRs) for the patients with abnormal splenic areas were 1.32 (95% confidence interval (CI): 1.08, 1.61) in the discovery cohort and 1.59 (95% CI: 1.01, 2.50) in the validation cohort. Multivariable analysis demonstrated that abnormal splenic area was independent of shorter OS in the discovery (HR: 1.32, 95% CI: 1.08, 1.63) and validation cohorts (HR: 1.84, 95% CI: 1.12, 3.02).ConclusionPreoperative CT measurements of the splenic area serve as a prognostic indicator for early-stage NSCLC patients, offering a novel metric with potential implications for personalized therapeutic strategies in top-tier oncology research.