Left atrial size, chemosensitivity, and central sleep apnea in heart failure.
Ontology highlight
ABSTRACT: Central sleep apnea (CSA) is common among patients with heart failure (HF) and is promoted by elevated CO2 chemosensitivity. Left atrial size is a marker of the hemodynamic severity of HF. The aim of this study was to determine if left atrial size predicts chemosensitivity to CO2 and CSA in patients with HF.Patients with HF with left ventricular ejection fraction ≤ 35% underwent polysomnography for detection of CSA, echocardiography, and measurement of CO2 chemosensitivity. CSA was defined as an apnea-hypopnea index (AHI) ≥ 15/h with ≥ 50% central apneic events. The relation of clinical and echocardiographic parameters to chemosensitivity and CSA were evaluated by linear regression, estimation of ORs, and receiver operator characteristics.Of 46 subjects without OSA who had complete data for analysis, 25 had CSA. The only parameter that significantly correlated with chemosensitivity was left atrial volume index (LAVI) (r = 0.40, P < .01). LAVI was greater in those with CSA than those without CSA (59.2 mL/m2 vs 36.4 mL/m2, P < .001) and significantly correlated with log-transformed AHI (r = 0.46, P = .001). LAVI was the best predictor of CSA (area under the curve = 0.83). A LAVI ≤ 33 mL/m2 was associated with 22% risk for CSA, while LAVI ≥ 53 mL/m2 was associated with 92% risk for CSA.Increased LAVI is associated with heightened CO2 chemosensitivity and greater frequency of CSA. LAVI may be useful to guide referral for polysomnography for detection of CSA in patients with HF.
Project description:Leptin-deficient animals hyperventilate. Leptin expression by adipocytes is attenuated by atrial natriuretic peptide (ANP). Increased circulating natriuretic peptides (NPs) are associated with an increased risk of central sleep apnea (CSA). This study tested whether serum leptin concentration is inversely correlated to NP concentration and decreased in patients with heart failure (HF) and CSA.Subjects with HF (N = 29) were studied by measuring leptin, NPs, CO2 chemosensitivity (Δminute ventilation [V.e]/Δpartial pressure of end-tidal CO2 [Petco2]), and ventilatory efficiency (V.e/CO2 output [V.co2]) and were classified as CSA or no sleep-disordered breathing by polysomnography. CSA was defined as a central apnea-hypopnea index ≥ 15. The Student t test, Mann-Whitney U test, and logistic regression were used for analysis, and data were summarized as mean ± SD; P < .05 was considered significant.Subjects with CSA had higher ANP and brain natriuretic peptide (BNP) concentrations (P < .05), ΔV.e/ΔPetco2 (2.39 ± 1.03 L/min/mm Hg vs 1.54 ± 0.35 L/min/mm Hg, P = .01), and V.e/V.co2 (43 ± 9 vs 34 ± 7, P < .01) and lower leptin concentrations (8 ± 10.7 ng/mL vs 17.1 ± 8.8 ng/mL, P < .01). Logistic regression analysis (adjusted for age, sex, and BMI) demonstrated leptin (OR = 0.07; 95% CI, 0.01-0.71; P = .04) and BNP (OR = 4.45; 95% CI, 1.1-17.9; P = .05) to be independently associated with CSA.In patients with HF and CSA, leptin concentration is low and is inversely related to NP concentration. Counterregulatory interactions of leptin and NP may be important in ventilatory control in HF.
Project description:BackgroundCentral sleep apnea is associated with poor prognosis and death in patients with heart failure. Adaptive servo-ventilation is a therapy that uses a noninvasive ventilator to treat central sleep apnea by delivering servo-controlled inspiratory pressure support on top of expiratory positive airway pressure. We investigated the effects of adaptive servo-ventilation in patients who had heart failure with reduced ejection fraction and predominantly central sleep apnea.MethodsWe randomly assigned 1325 patients with a left ventricular ejection fraction of 45% or less, an apnea-hypopnea index (AHI) of 15 or more events (occurrences of apnea or hypopnea) per hour, and a predominance of central events to receive guideline-based medical treatment with adaptive servo-ventilation or guideline-based medical treatment alone (control). The primary end point in the time-to-event analysis was the first event of death from any cause, lifesaving cardiovascular intervention (cardiac transplantation, implantation of a ventricular assist device, resuscitation after sudden cardiac arrest, or appropriate lifesaving shock), or unplanned hospitalization for worsening heart failure.ResultsIn the adaptive servo-ventilation group, the mean AHI at 12 months was 6.6 events per hour. The incidence of the primary end point did not differ significantly between the adaptive servo-ventilation group and the control group (54.1% and 50.8%, respectively; hazard ratio, 1.13; 95% confidence interval [CI], 0.97 to 1.31; P=0.10). All-cause mortality and cardiovascular mortality were significantly higher in the adaptive servo-ventilation group than in the control group (hazard ratio for death from any cause, 1.28; 95% CI, 1.06 to 1.55; P=0.01; and hazard ratio for cardiovascular death, 1.34; 95% CI, 1.09 to 1.65; P=0.006).ConclusionsAdaptive servo-ventilation had no significant effect on the primary end point in patients who had heart failure with reduced ejection fraction and predominantly central sleep apnea, but all-cause and cardiovascular mortality were both increased with this therapy. (Funded by ResMed and others; SERVE-HF ClinicalTrials.gov number, NCT00733343.).
Project description:Central sleep apnea (CSA) is a highly prevalent, though often unrecognized, comorbidity in patients with heart failure (HF). Data from HF population studies suggest that it may present in 30% to 50% of HF patients. CSA is recognized as an important contributor to the progression of HF and to HF-related morbidity and mortality. Over the past 2 decades, an expanding body of research has begun to shed light on the pathophysiologic mechanisms of CSA. Armed with this growing knowledge base, the sleep, respiratory, and cardiovascular research communities have been working to identify ways to treat CSA in HF with the ultimate goal of improving patient quality of life and clinical outcomes. In this paper, we examine the current state of knowledge about the mechanisms of CSA in HF and review emerging therapies for this disorder.
Project description:Central sleep apnea (CSA) is frequent among patients with heart failure (HF) and associated with increased morbidity and mortality. Elevated cardiac filling pressures promote CSA and atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) secretion. We hypothesized that circulating natriuretic peptide concentrations predict CSA.Consecutive patients with HF (n = 44) with left ventricular ejection fraction (LVEF) ≤ 35% underwent polysomnography for detection of CSA. CSA was defined as an apnea-hypopnea index ≥ 15 with ≥ 50% central apneic events. The relation of natriuretic peptide concentrations to CSA was evaluated by estimation of ORs and receiver operator characteristics (ROCs).Twenty-seven subjects (61%) had CSA, with men more frequently affected than women (73% vs 27%; OR, 7.1; P = .01); given that only three women had CSA, further analysis was restricted to men. Subjects with CSA had higher mean ANP (4,336 pg/mL vs 2,510 pg/mL, P = .03) and BNP concentrations (746 pg/mL vs 379 pg/mL, P = .05). ANP and BNP concentrations were significantly related to CSA (OR, 3.7 per 3,000 pg/mL, P = .03 and OR, 1.5 per 200 pg/mL, P = .04, respectively), whereas age, LVEF, and New York Heart Association functional class were not. Concentrations of ANP and BNP were predictive of CSA as ROC demonstrated areas under the curve of 0.75 and 0.73, respectively.Risk of CSA is related to severity of HF. ANP and BNP concentrations performed similarly for detection of CSA; low concentrations appear associated with low risk for CSA in men.
Project description:Background/objectivesAdults with heart failure (HF) have high prevalence of central sleep apnea (CSA). While this has been repeatedly investigated in adults, there is a deficiency of similar research in pediatric populations. The goal of this study was to compare prevalence of CSA in children with and without HF and correlate central apneic events with heart function.MethodsRetrospective analysis of data from children with and without HF was conducted. Eligible children were less than 18 years old with echocardiogram and polysomnogram within 6 months of each other. Children were separated into groups with and without HF based on left ventricular ejection fraction (LVEF). Defining CSA as central apnea-hypopnea index (CAHI) more than 1/hour, the cohort was also classified into children with and without CSA for comparative study.ResultsA total of 120 children (+HF: 19, -HF: 101) were included. The +HF group was younger, with higher prevalence of trisomy 21, muscular dystrophy, oromotor incoordination, and structural heart disease. The +HF group had lower apnea-hypopnea index (median: 3/hour vs. 8.6/hour) and lower central apnea index (CAI) (median: 0.2/hour vs. 0.55/hour). Prevalence of CSA was similar in both groups (p = .195). LogCAHI was inversely correlated to age (Pearson correlation coefficient: -0.245, p = .022). Children with CSA were younger and had higher prevalence of prematurity (40% vs. 5.3%). There was no significant difference in LVEF between children with and without CSA. After excluding children with prematurity, relationship between CAHI and age was no longer sustained.ConclusionsIn contrast to adults, there is no difference in prevalence of CSA in children with and without HF. Unlike in adults, LVEF does not correlate with CAI in children. Overall, it appears that central apneic events may be more a function of age and prematurity rather than of heart function.
Project description:Periodic breathing with central sleep apnea (CSA) is common in patients with left ventricular systolic dysfunction. Based on the pathophysiological mechanisms underlying CSA, we hypothesized that the frequency of CSA episodes would increase in the late hours of non-rapid eye movement (NREM) of sleep. Forty-one patients with left ventricular ejection fraction <40% underwent full-night-attended polysomnography scored by a central core lab. Because central apneas occur primarily in NREM sleep, total NREM sleep time for each patient was divided into 8 equal duration segments. Segment event counts were normalized to an events/hour index based on sleep segment duration. Central apnea index (CAI) varied among sleep segments (p = 0.001). As expected CAI was higher in segment 1 compared to segments 2 and 3, increasing during later segments. The minimum CAI occurred in segment 2 with mean ± SD of 21 ± 3 events/hour and maximum CAI was in segment 8 with 37 ± 4 events/hour. We also determined central apnea duration which varied among segments (p = 0.005), with longer durations later in the night (segment 1: 22 ± 1 seconds; segment 8: 26 ± 1 seconds, p < 0.001). Data were also analyzed including rapid eye movement (REM) sleep, with similar results. Further, comparison of CAI between the first and second half of the night showed a significant increase in the index. Circulation time did not change across the segments (p = 0.073). In patients with left ventricular dysfunction and CSA, central apnea burden (number and duration) increases during later hours of sleep. These findings have pathophysiological and therapeutic implications. NCT01124370.
Project description:Study objectivesPatients who have experienced heart failure with central sleep apnea/Cheyne-Stokes respiration (CSA/CSR) have an impaired prognosis. Continuous positive airway pressure (CPAP) and adaptive servoventilation (ASV) as well as nocturnal oxygen (O₂) are proposed treatment modalities of CSA/CSR. The goal of the study is to assess whether and how different treatments of CSA/CSR affect cardiac function.MethodsDatabases were searched up to December 2017 for randomized controlled trials (RCTs) comparing the effect of any combination of CPAP, ASV, O₂ or an inactive control on left ventricular ejection fraction (LVEF) in patients with heart failure and CSA/CSR. A systematic review and network meta-analysis using multivariate random-effects meta-regression were performed.ResultsTwenty-four RCTs (1,289 patients) were included in the systematic review and data of 16 RCTs (951 patients; apnea-hypopnea-index 38 ± 3/h, LVEF 29 ± 3%) could be pooled in a network meta-analysis. Compared to an inactive control, both CPAP and ASV significantly improved LVEF by 4.4% (95% confidence interval 0.3-8.5%, P = 0.036) and 3.8% (95% confidence interval 0.6-7.0%, P = 0.025), respectively, whereas O₂ had no effect on LVEF (P = 0.35). There was no difference in treatment effects on LVEF between CPAP and ASV (P = 0.76). The treatment effect of positive pressure ventilation was larger when baseline LVEF was lower in systolic heart failure.ConclusionsCPAP and ASV are effective in improving LVEF in patients with heart failure and CSA/CSR to a clinically relevant amount, whereas nocturnal O₂ is not. There is no difference between CPAP and ASV in the comparative beneficial effect on cardiac function.
Project description:BackgroundOur aim was to assess how atrial fibrillation (AF) induction, chronicity, and RR interval irregularity affect left atrial (LA) function and size in the setting of underlying heart failure (HF), and to determine whether AF effects can be mitigated by vagal nerve stimulation (VNS).MethodsHF was induced by 4-weeks of rapid ventricular pacing in 24 dogs. Subsequently, AF was induced and maintained by atrial pacing at 600 bpm. Dogs were randomized into control (n = 9) and VNS (n = 15) groups. In the VNS group, atrioventricular node fat pad stimulation (310 μs, 20 Hz, 3-7 mA) was delivered continuously for 6 months. LA volume and LA strain data were calculated from bi-weekly echocardiograms.ResultsRR intervals decreased with HF in both groups (p = 0.001), and decreased further during AF in control group (p = 0.014), with a non-significant increase in the VNS group during AF. LA size increased with HF (p<0.0001), with no additional increase during AF. LA strain decreased with HF (p = 0.025) and further decreased after induction of AF (p = 0.0001). LA strain decreased less (p = 0.001) in the VNS than in the control group. Beat-by-beat analysis showed a curvilinear increase of LA strain with longer preceding RR interval, (r = 0.45, p <0.0001) with LA strain 1.1% higher (p = 0.02) in the VNS-treated animals, independent of preceding RR interval duration. The curvilinear relationship between ratio of preceding and pre-preceding RR intervals, and subsequent LA strain was weaker, (r = 0.28, p = 0.001). However, VNS-treated animals again had higher LA strain (by 2.2%, p = 0.002) independently of the ratio of preceding and pre-preceding RR intervals.ConclusionsIn the underlying presence of pacing-induced HF, AF decreased LA strain, with little impact on LA size. LA strain depends on the preceding RR interval duration.
Project description:BackgroundHospitalized heart failure patients have a high readmission rate. We sought to determine the independent risk due to central sleep apnea (CSA) of readmission in patients with systolic heart failure (SHF).Methods and resultsThis was a prospective observational cohort study of hospitalized patients with SHF. Patients underwent sleep studies during their hospitalization and were followed for 6 months to determine their rate of cardiac readmissions; 784 consecutive patients were included; 165 patients had CSA and 139 had no sleep-disordered breathing (SDB); the remainder had obstructive sleep apnea (OSA). The rate ratio for 6 months' cardiac readmissions was 1.53 (95% confidence interval 1.1-2.2; P = .03) in CSA patients compared with no SDB. This rate ratio was adjusted for systolic function, type of cardiomyopathy, age, weight, sex, diabetes, coronary disease, length of stay, admission sodium, creatinine, hemoglobin, blood pressure, and discharge medications. Severe OSA was also an independent predictor of readmissions with an adjusted rate ratio of 1.49 (P = .04).ConclusionIn this first evaluation of the impact of SDB on cardiac readmissions in heart failure, CSA was an independent risk factor for 6 months' cardiac readmissions. The effect size of CSA exceeded that of all known predictors of heart failure readmissions.
Project description:BackgroundThis study investigated the association of sex with cardiovascular outcomes in a prospective cohort of patients with heart failure (HF) with obstructive sleep apnea or central sleep apnea.Methods and resultsPatients were screened for sleep apnea on admission using multichannel cardiopulmonary monitoring from May 2015 to July 2018. The primary outcome was a composite of cardiovascular death or unplanned hospitalization for worsening HF. Ultimately, 453 patients with HF with obstructive sleep apnea or central sleep apnea were included; 71 (15.7%) and 382 (84.3%) were women and men, respectively. During a median follow-up of 2.33 years, 248 (54.7%) patients experienced the primary outcome. In the overall population, after adjusting for potential confounders, women had an increased risk of the primary outcome (66.2% versus 52.6%; hazard ratio [HR], 1.47 [95% CI, 1.05-2.04]; P=0.024) and HF rehospitalization (62.0% versus 46.6%; HR, 1.55 [95% CI, 1.10-2.19]; P=0.013) compared with men but a comparable risk of cardiovascular death (21.1% versus 23.3%; HR, 0.78 [95% CI, 0.44-1.37]; P=0.383). Likewise, in patients with HF with obstructive sleep apnea, women had a higher risk of the primary outcome (81.8% versus 46.3%, HR, 2.37 [95% CI, 1.28-4.38]; P=0.006) and HF rehospitalization (81.8% versus 44.7%, HR, 2.46 [95% CI, 1.32-4.56], P=0.004). However, in patients with HF with central sleep apnea, there was no statistically significant difference between women and men.ConclusionsIn hospitalized patients with HF, female sex was associated with an increased risk of the primary outcome and HF rehospitalization, especially in those with obstructive sleep apnea. Screening for sleep apnea should be emphasized to improve the prognosis.RegistrationURL: https://www.clinicaltrials.gov. Unique identifier: NCT02664818.