Population pharmacokinetics modeling of oxcarbazepine to characterize drug interactions in Chinese children with epilepsy.
Ontology highlight
ABSTRACT: AIM: To develop a population pharmacokinetics model of oxcarbazepine in Chinese pediatric patients with epilepsy, and to study the interactions between oxcarbazepine and other antiepileptic drugs (AEDs). METHODS: A total of 688 patients with epilepsy aged 2 months to 18 years were divided into model (n=573) and valid (n=115) groups. Serum concentrations of the main active metabolite of oxcarbazepine, 10-hydroxycarbazepine (MHD), were determined 0.5-48 h after the last dosage. A population pharmacokinetics (PPK) model was constructed using NLME software. This model was internally evaluated using Bootstrapping and goodness-of-fit plots inspection. The data of the valid group were used to calculate the mean prediction error (MPE), mean absolute prediction error (MAE), mean squared prediction error (MSE) and the 95% confidence intervals (95% CI) to externally evaluate the model. RESULTS: The population values of pharmacokinetic parameters estimated in the final model were as follows: Ka=0.83 h-1, Vd=0.67 L/kg, and CL=0.035 L·kg(-1)·h(-1). The enzyme-inducing AEDs (carbamazepine, phenytoin, phenobarbital) and newer generation AEDs (levetiracetam, lamotrigine, topiramate) increased the weight-normalized CL value of MHD by 17.4% and 10.5%, respectively, whereas the enzyme-inhibiting AED valproic acid decreased it by 3%. No significant association was found between the CL value of MHD and the other covariates. For the final model, the evaluation results (95% CI) were MPE=0.01 (-0.07-0.10) mg/L, MAE=0.46 (0.40-0.51) mg/L, MSE=0.39 (0.27-0.51) (mg/L)(2). CONCLUSION: A PPK model of OXC in Chinese pediatric patients with epilepsy is established. The enzyme-inducing AEDs and some newer generation AEDs (lamotrigine, topiramate) could slightly increase the metabolism of MHD.
Project description:AIM: To establish a population pharmacokinetics (PPK) model of levetiracetam in Chinese children with epilepsy. METHODS: A total of 418 samples from 361 epileptic children in Peking University First Hospital were analyzed. These patients were divided into two groups: the PPK model group (n=311) and the PPK validation group (n=50). Levetiracetam concentrations were determined by HPLC. The PPK model of levetiracetam was established using NONMEM, according to a one-compartment model with first-order absorption and elimination. To validate the model, the mean prediction error (MPE), mean squared prediction error (MSPE), root mean-squared prediction error (RMSPE), weight residues (WRES), and the 95% confidence intervals (95% CI) were calculated. RESULTS: A regression equation of the basic model of levetiracetam was obtained, with clearance (CL/F)=0.988 L/h, volume of distribution (V/F)=12.3 L, and K(a)=1.95 h(-1). The final model was as follows: K(a)=1.56 h(-1), V/F=12.1 (L), CL/F=1.04×(WEIG/25)(0.583) (L/h). For the basic model, the MPE, MSPE, RMSPE, WRES, and the 95%CI were 9.834 (-0.587-197.720), 50.919 (0.012-1286.429), 1.680 (0.021-34.184), and 0.0621 (-1.100-1.980). For the final model, the MPE, MSPE, RMSPE, WRES, and the 95% CI were 0.199 (-0.369-0.563), 0.002082 (0.00001-0.01054), 0.0293 (0.001-0.110), and 0.153 (-0.030-1.950). CONCLUSION: A one-compartment model with first-order absorption adequately described the levetiracetam concentrations. Body weight was identified as a significant covariate for levetiracetam clearance in this study. This model will be valuable to facilitate individualized dosage regimens.
Project description:PurposeThe aims of the study were to develop a population pharmacokinetic model of orally administered brivaracetam in paediatric patients and to provide dosing suggestions.MethodsAnalysis included 600 brivaracetam plasma concentrations from a phase 2a study (NCT00422422; N01263) in 96 paediatric patients with epilepsy aged 1 month to 16 years, taking one to three concomitant antiepileptic drugs (AEDs). Pharmacokinetic analysis was performed using non-linear mixed effects modelling, and a stepwise covariate search was used to determine factors influencing brivaracetam clearance. Simulations were performed to investigate dosing regimens.ResultsThe final model consisted of first-order absorption, single compartment distribution and first-order elimination components with allometric scaling of clearance and volume using lean body weight and fixed allometric exponents. Co-administration with phenobarbital or carbamazepine was associated with a 29% (95%CI 17%/39%) and 32% (22%/42%) decrease in exposure, respectively. Co-administration with valproate was associated with an 11% (1%/23%) increase in exposure. Simulations demonstrated that the majority of children were predicted to have an exposure similar to that in adults, using an age-independent dosing regimen of 2.0 mg/kg bid with a maximum of 100 mg bid for body weight >50 kg.ConclusionsA paediatric dose adaptation of 2.0 mg/kg twice daily with a maximum of 100 mg twice daily for body weight >50 kg is predicted to ensure steady-state plasma concentrations in the same range as in adult patients receiving 100 mg twice daily (highest recommended dose). Data suggest no need to change brivaracetam dosing when used concomitantly with carbamazepine, phenobarbital or valproate.
Project description:The present study aimed to establish population pharmacokinetic models of latamoxef, as well as its R- and S-epimers, and generate findings to guide the individualized administration of latamoxef in pediatric patients. A total of 145 in-hospital children aged 0.08-10.58 years old were included in this study. Three population pharmacokinetic models of latamoxef and its R- and S-epimers were established. The stability and predictive ability of the final models were evaluated by utilizing goodness-of-fit plots, nonparametric bootstrapping, and normalized prediction distribution errors. The final model of total latamoxef was considered as a basis for the dosing regimen. A two-compartment model with first-order elimination best described the pharmacokinetics of total latamoxef. The population typical values of total latamoxef were as follows: central compartment distribution volume (V1) of 4.84 L, peripheral compartment distribution volume (V2) of 16.18 L, clearance (CL) of 1.00 L/h, and inter-compartmental clearance (Q) of 0.97 L/h. Moreover, R-epimer has a higher apparent volume of distribution and lower clearance than S-epimer. Body surface area (BSA) was identified as the most significant covariate to V, CL, and Q. Specific recommendations are given for dosage adjustment in pediatric patients based on BSA. This study highlights that a BSA-normalized dose of latamoxef was required when treating different bacteria to reach the therapeutic target more effectively.
Project description:Cyclosporine (CsA) is characterized by a narrow therapeutic window and high interindividual pharmacokinetic variability, particularly in juvenile patients. The aims of this study were to build a population pharmacokinetic model of CsA in Chinese children with hematopathy who received allogeneic hematopoietic stem cell transplantation (allo-HSCT) and to identify covariates affecting CsA pharmacokinetics. A total of 86 Chinese children aged 8.4 ± 3.8 years (range 1.1-16.8 years) who received allo-HSCT were enrolled. Whole blood samples were collected before allo-HSCT. Genotyping was performed using an Agena MassARRAY system. A total of 1010 trough plasma concentration values of CsA and clinical data were collected. The population pharmacokinetic model of CsA was constructed using nonlinear mixed-effects modeling (NONMEM) software. The stability and performance of the final model were validated using bootstrapping and normalized prediction distribution errors. We showed that a one-compartment model with first-order elimination adequately described the pharmacokinetics of CsA. The typical values for clearance (CL) and volume of distribution (V) were 42.3 L/h and 3100 L, respectively. Body weight, postoperative days, CYP3A4*1 G genotype, estimated glomerular filtration rate and coadministration of triazole antifungal drugs were identified as significant covariates for CL. Weight and postoperative days were significant covariates for the V of CsA. Our model can be adopted to optimize the CsA dosing regimen for Chinese children with hematopathy receiving allo-HSCT.
Project description:Vortioxetine is a novel antidepressant with multimodal activity currently approved for the treatment of major depressive disorder. Vortioxetine is orally administered once daily at 5- to 20-mg doses. The pharmacokinetics of vortioxetine are linear and dose proportional, with a mean terminal half-life of approximately 66 h and steady-state plasma concentrations generally achieved within 2 weeks of dosing. The mean absolute oral bioavailability of vortioxetine is 75%. No food effect on pharmacokinetics was observed. Vortioxetine is metabolized by cytochrome P450 enzymes and subsequently by uridine diphosphate glucuronosyltransferase. The major metabolite is pharmacologically inactive, and the minor pharmacologically active metabolite is not expected to cross the blood-brain barrier, making the parent compound primarily responsible for in-vivo activity. No clinically relevant differences were observed in vortioxetine exposure by sex, age, race, body size, and renal or hepatic function. Dose adjustment is only recommended for cytochrome P450 2D6 poor metabolizers based on polymorphism of the cytochrome P450 enzymes involved. Similarly, except for bupropion, a strong cytochrome P450 2D6 inhibitor, and rifampin, a broad cytochrome P450 inducer, co-administration of other drugs evaluated did not affect the vortioxetine exposure or safety profile in any clinically meaningful way. Pharmacodynamic studies demonstrated that vortioxetine achieved high levels of serotonin transporter occupancy in relevant brain areas, affected neurotransmitter levels in the cerebrospinal fluid, and modified abnormal resting state networks in the brain over the therapeutic dose range. Overall, vortioxetine can be administered in most populations studied to date without major dose adjustments; however, dose adjustments should be considered on a patient-by-patient basis.
Project description:ObjectiveChildren with epilepsy (EPI) have a higher rate of attention-deficit/hyperactivity disorder (ADHD; 28-70%) than typically developing (TD) children (5-10%); however, attention is multidimensional. Thus, we aimed to characterize the profile of attention difficulties in children with epilepsy.MethodsSeventy-five children with localization-related epilepsy ages 6-16 years and 75 age-matched controls were evaluated using multimodal, multidimensional measures of attention including direct performance and parent ratings of attention as well as intelligence testing. We assessed group differences across attention measures, determined if parent rating predicted performance on attention measures, and examined if epilepsy characteristics were associated with attention skills.ResultsThe EPI group performed worse than the TD group on timed and complex attention aspects of attention (p < 0.05), whereas performance on simple visual and simple auditory attention tasks was comparable. Children with EPI were 12 times as likely as TD children to have clinically elevated symptoms of inattention as rated by parents, but ratings were a weak predictor of attention performance. Earlier age of onset was associated with slower motor speed (p < 0.01), but no other epilepsy-related clinical characteristics were associated with attention skills.SignificanceThis study clarifies the nature of the attention problems in pediatric epilepsy, which may be under-recognized. Children with EPI had difficulty with complex attention and rapid response, not simple attention. As such, they may not exhibit difficulty until later in primary school when demands increase. Parent report with standard ADHD screening tools may under-detect these higher-order attention difficulties. Thus, monitoring through direct neuropsychological performance is recommended.
Project description:Doxycycline is a tetracycline-class antimicrobial labeled by the United States (U.S.) Food and Drug Administration for children >8 years of age for many common childhood infections. Doxycycline is not labeled for children ≤8 years of age, due to the association between tetracycline class antibiotics and tooth staining, although doxycycline may be used off-label in severe conditions. Accordingly, there is a paucity of pharmacokinetic (PK) data to guide dosing in children 8 years and younger. We leveraged opportunistically-collected plasma samples after intravenous (IV) and oral doxycycline doses received per standard of care to characterize the PK of doxycycline in children of different ages, and evaluated the effect of obesity and fasting status on PK parameters.We developed a population PK model of doxycycline using data collected from 47 patients 0-18 years of age, including 14 participants ≤8 years. We developed a 1 compartment PK model and found doxycycline clearance to be 3.32 L/h/70 kg and volume to be 96.8 L/70kg for all patients; comparable to values reported in adults. We estimated a bioavailability of 89.6%, also consistent with adult data. Allometrically scaled clearance and volume of distribution did not differ between children 2 to ≤8 years of age and children >8 to ≤18 years of age, suggesting that younger children may be given the same per kg dosing. Obese and fasting status were not selected for inclusion in the final model. Additional doxycycline PK samples collected in future studies may be used to improve model performance and maximize its clinical value.
Project description:Background/objectiveMoxifloxacin is a fluoroquinolone that is commonly used in adults, but not children. Certain clinical situations compel pediatric clinicians to use moxifloxacin, despite its potential for toxicity and limited pharmacokinetics (PK) data. Our objective was to further characterize the pharmacokinetics of moxifloxacin in children.MethodsWe performed an opportunistic, open-label population PK study of moxifloxacin in children < 18 years of age who received moxifloxacin as part of standard care. A set of structural PK models and residual error models were explored using nonlinear mixed-effects modeling. Covariates with known biological relationships were investigated for their influence on PK parameters.ResultsWe obtained 43 moxifloxacin concentrations from 14 participants who received moxifloxacin intravenously (n = 8) or orally (n = 6). The dose of moxifloxacin was 10 mg/kg daily in participants ≤ 40 kg and 400 mg daily in participants > 40 kg. The population mean clearance and mean volume of distribution were 18.2 L/h and 167 L, respectively. The oral absorption was described by a first-order process. The estimated extent of oral bioavailability was highly variable (range 20-91%). Total body weight was identified as a covariate on clearance and volume of distribution, and substantially reduced the random unexplained inter-individual variability for both parameters. No participants experienced suspected serious adverse reactions related to moxifloxacin.ConclusionThese data add to the existing literature to support use of moxifloxacin in children in certain situations; however, further prospective studies on the safety and efficacy of moxifloxacin are needed.
Project description:AimsThe aim of this study was to evaluate the population pharmacokinetics (PopPK) of olanzapine in children and devise a model-informed paediatric dosing scheme.MethodsThe PopPK of olanzapine was characterized using opportunistically collected plasma samples from children receiving olanzapine per standard of care for any indication. A nonlinear mixed effect modelling approach was employed for model development using the software NONMEM (v7.4). Simulations from the developed PopPK model were used to devise a paediatric dosing scheme that targeted comparable plasma exposures to adolescents and adults.ResultsForty-five participants contributed 83 plasma samples towards the analysis. The median (range) postnatal age and body weight of participants were 3.8 years (0.2-19.2) and 14.1 kg (4.2-111.7), respectively. The analysis was restricted to pharmacokinetic (PK) samples collected following enteral administration (oral and feeding tube). A one-compartment model with linear elimination provided an appropriate fit to the data. The final model included the covariates body weight and postmenstrual age (PMA) on apparent olanzapine clearance (CL/F). Typical CL/F and apparent volume of distribution (scaled to 70 kg) were 16.8 L/h (21% RSE) and 663 L (13% RSE), respectively. Developed dosing schemes used weight-normalized doses for children ≤6 months postnatal age or <15 kg and fixed doses for children ≥15 kg.ConclusionWe developed a paediatric PopPK model for enterally-administered olanzapine. To our knowledge, this analysis is the first study to characterize the PK of olanzapine in participants ranging from infants to adolescents. Body weight and PMA were identified as influential covariates for characterizing developmental changes in olanzapine apparent clearance.
Project description:Teicoplanin is frequently administered to treat Gram-positive infections in pediatric patients. However, not enough is known about the pharmacokinetics (PK) of teicoplanin in children to justify the optimal dosing regimen. The aim of this study was to determine the population PK of teicoplanin in children and evaluate the current dosage regimens. A PK hospital-based study was conducted. Current dosage recommendations were used for children up to 16 years of age. Thirty-nine children were recruited. Serum samples were collected at the first dose interval (1, 3, 6, and 24 h) and at steady state. A standard 2-compartment PK model was developed, followed by structural models that incorporated weight. Weight was allowed to affect clearance (CL) using linear and allometric scaling terms. The linear model best accounted for the observed data and was subsequently chosen for Monte Carlo simulations. The PK parameter medians/means (standard deviation [SD]) were as follows: CL, [0.019/0.023 (0.01)] × weight liters/h/kg of body weight; volume, 2.282/4.138 liters (4.14 liters); first-order rate constant from the central to peripheral compartment (Kcp), 0.474/3.876 h(-1) (8.16 h(-1)); and first-order rate constant from peripheral to central compartment (Kpc), 0.292/3.994 h(-1) (8.93 h(-1)). The percentage of patients with a minimum concentration of drug in serum (Cmin) of <10 mg/liter was 53.85%. The median/mean (SD) total population area under the concentration-time curve (AUC) was 619/527.05 mg · h/liter (166.03 mg · h/liter). Based on Monte Carlo simulations, only 30.04% (median AUC, 507.04 mg · h/liter), 44.88% (494.1 mg · h/liter), and 60.54% (452.03 mg · h/liter) of patients weighing 50, 25, and 10 kg, respectively, attained trough concentrations of >10 mg/liter by day 4 of treatment. The teicoplanin population PK is highly variable in children, with a wider AUC distribution spread than for adults. Therapeutic drug monitoring should be a routine requirement to minimize suboptimal concentrations. (This trial has been registered in the European Clinical Trials Database Registry [EudraCT] under registration number 2012-005738-12.).