Unknown

Dataset Information

0

The neurometabolic fingerprint of excessive alcohol drinking.


ABSTRACT: 'Omics' techniques are widely used to identify novel mechanisms underlying brain function and pathology. Here we applied a novel metabolomics approach to further ascertain the role of frontostriatal brain regions for the expression of addiction-like behaviors in rat models of alcoholism. Rats were made alcohol dependent via chronic intermittent alcohol vapor exposure. Following a 3-week abstinence period, rats had continuous access to alcohol in a two-bottle, free-choice paradigm for 7 weeks. Nontargeted flow injection time-of-flight mass spectrometry was used to assess global metabolic profiles of two cortical (prelimbic and infralimbic) and two striatal (accumbens core and shell) brain regions. Alcohol consumption produces pronounced global effects on neurometabolomic profiles leading to a clear separation of metabolic phenotypes between treatment groups, particularly. Further comparisons of regional tissue levels of various metabolites, most notably dopamine and Met-enkephalin, allow the extrapolation of alcohol consumption history. Finally, a high-drinking metabolic fingerprint was identified indicating a distinct alteration of central energy metabolism in the accumbens shell of excessively drinking rats that could indicate a so far unrecognized pathophysiological mechanism in alcohol addiction. In conclusion, global metabolic profiling from distinct brain regions by mass spectrometry identifies profiles reflective of an animal's drinking history and provides a versatile tool to further investigate pathophysiological mechanisms in alcohol dependence.

SUBMITTER: Meinhardt MW 

PROVIDER: S-EPMC4367471 | biostudies-other | 2015 Apr

REPOSITORIES: biostudies-other

altmetric image

Publications

The neurometabolic fingerprint of excessive alcohol drinking.

Meinhardt Marcus W MW   Sévin Daniel C DC   Klee Manuela L ML   Dieter Sandra S   Sauer Uwe U   Sommer Wolfgang H WH  

Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 20150313 5


'Omics' techniques are widely used to identify novel mechanisms underlying brain function and pathology. Here we applied a novel metabolomics approach to further ascertain the role of frontostriatal brain regions for the expression of addiction-like behaviors in rat models of alcoholism. Rats were made alcohol dependent via chronic intermittent alcohol vapor exposure. Following a 3-week abstinence period, rats had continuous access to alcohol in a two-bottle, free-choice paradigm for 7 weeks. No  ...[more]

Similar Datasets

2020-04-07 | GSE137228 | GEO
| S-EPMC3591000 | biostudies-literature
| S-EPMC5636002 | biostudies-literature
| S-EPMC7927905 | biostudies-literature
| S-EPMC3228847 | biostudies-literature
| S-EPMC7098802 | biostudies-literature
| S-EPMC8636625 | biostudies-literature