Immune responses induced by T-cell vaccination in patients with rheumatoid arthritis.
Ontology highlight
ABSTRACT: Patients with rheumatoid arthritis (RA) were treated with a cellular vaccine, which consisted of autologous collagen-reactive T-cells. This study showed that antigen-specific proliferative activity of the peripheral blood mononuclear cells was significantly downregulated after T-cell vaccination in RA patients. T-cell vaccination resulted in a statistically significant decrease in plasma IFNγ levels and a concomitant increase in IL-4 levels in treated patients. Accordingly, following T-cell vaccination the number of IFNγ-producing CD4(+) and CD8(+) T-cells was decreased by 1.6-1.8-fold, which was paralleled by 1.7-fold increases in IL-4-producing CD4(+) T-cells. In addition, the present study showed 5-7-fold increase in the CD8(+)CD45RO(+)CD62L(-) effector memory T-cells and central memory T-cells (both CD4(+) CD45RO(+)CD62L(+) T-cells and CD8(+)CD45RO(+)CD62L(+) T-cells) in RA patients, as compared with healthy individuals. We observed significant reduction in CD4(+) and CD8(+) central memory T-cells, as well as reduction in CD8(+) effector memory T-cells in vaccinated patients in the course of the treatment. We also demonstrated that CD4(+)CD25(+)FoxP3(+) regulatory T-cell levels were significantly up-regulated in the peripheral blood of RA patients following T-cell vaccination. However, CD4(+)CD25(-)FoxP3(+) Т-cell levels did not significantly change during the entire T-cell vaccination course. In conclusion, the T-cell immunotherapy regimen used resulted in the clinical improvement, which was achieved in 87% patients.
Project description:ObjectivesThe mRNA-based COVID-19 vaccines are now employed globally and have shown high efficacy in preventing SARS-CoV-2 infection. However, less is known about the vaccine efficacy in immune suppressed individuals. This study sought to explore whether humoral immunity to the COVID-19 vaccine BNT162b2 is altered in rheumatoid arthritis patients treated with Janus kinase inhibitors by analyzing antibodies titer, neutralization activity and B cell responses.MethodsWe collected plasma samples from 12 rheumatoid arthritis patients who were treated with Janus kinase inhibitors and received two doses of the BNT162b2 vaccine, as well as 26 healthy individuals who were vaccinated with the same vaccine. We analyzed the quantity of the anti-spike IgG and IgA antibodies that were elicited following the BNT162b2 vaccination, the plasma neutralization capacity and the responsiveness of the B-lymphocytes. We used ELISA to quantify antibody titers, and plasma neutralization assay was used to determine virus neutralization capacity. Alteration in expression of genes that are associated with B cell activation and germinal center response were analyzed by qPCR.ResultsReduced levels of anti-spike IgG antibodies and neutralization capacity were seen in the rheumatoid arthritis patients who were treated with JAK inhibitors in comparison with healthy individuals. Furthermore, B cell responsiveness to the SARS-CoV-2 spike protein were reduced in the rheumatoid arthritis patients.ConclusionRheumatoid arthritis patients who are treated with JAK inhibitors show suppressed humoral response following BNT162b2 vaccination, as revealed by the quantity and quality of the anti-spike antibodies.
Project description:Our objective was to characterize T and B cell responses to vaccination with SARS-CoV-2 antigens in immunocompromised rheumatoid arthritis (RA) patients. In 22 RA patients, clinical and biological variables were analyzed before and 4 weeks after each of 3 messenger RNA (mRNA) vaccine doses and compared with unmatched healthy individuals. Sequentially sampled peripheral blood mononuclear cells and sera were collected to determine immune profiles and to analyze the T cell response to a spike peptide pool and B cell specificity to the receptor-binding domain (RBD). Anti-spike antibodies were detectable in 6 of 22 RA patients after 1 dose of vaccine with increasing titers after each booster dose, although the overall response was lower compared with that in healthy control individuals. Responding patients after the first dose were more likely to have RA antibodies and a higher baseline proportion of circulating follicular B cells. In RA patients, the mRNA vaccine elicited a robust CD4+ T response to a spike peptide pool following the first and second doses. Consistent with the serologies, RBD-specific B cells exhibited a modest increase after the first dose and the second dose resulted in marked increases only in a fraction of the RA patients to both ancestral and omicron RBD. Our results highlight the importance of multidose COVID-19 vaccination in RA patients to develop a protective humoral response. However, these patients rapidly develop specific T CD4+ responses, despite delayed B cell responses.
Project description:ObjectiveTo assess the kinetics of the humoral and cell-mediated responses after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination in rheumatoid arthritis (RA) patients treated with different immunosuppressive therapies.MethodsFollowing vaccine completed schedule, health care workers (HCWs, n = 49) and RA patients (n = 35) were enrolled at 5 weeks (T1) and 6 months (T6) after the first dose of BNT162b2-mRNA vaccination. Serological response was assessed by quantifying anti-receptor-binding domain (RBD)-specific immunoglobulin G (IgG) and SARS-CoV-2 neutralizing antibodies, while cell-mediated response was assessed by a whole-blood test quantifying the interferon (IFN)-γ response to spike peptides. B-cell phenotype and IFN-γ-specific T-cell responses were evaluated by flow cytometry.ResultsAfter 6 months, anti-RBD antibodies were still detectable in 91.4% of RA patients, although we observed a significant reduction of the titer in patients under Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4)-Ig [median: 16.4 binding antibody units (BAU)/ml, interquartile range (IQR): 11.3-44.3, p < 0.0001] or tumor necrosis factor (TNF)-α inhibitors (median: 26.5 BAU/ml, IQR: 14.9-108.8, p = 0.0034) compared to controls (median: 152.7 BAU/ml, IQR: 89.3-260.3). All peripheral memory B-cell (MBC) subpopulations, in particular, the switched IgG+ MBCs (CD19+CD27+IgD-IgM-IgG+), were significantly reduced in RA subjects under CTLA-4-Ig compared to those in HCWs (p = 0.0012). In RA patients, a significantly reduced anti-RBD IgG titer was observed at T6 vs. T1, mainly in those treated with CTLA-4-Ig (p = 0.002), interleukin (IL)-6 inhibitors (p = 0.015), and disease-modifying antirheumatic drugs (DMARDs) ± corticosteroids (CCSs) (p = 0.015). In contrast, a weak nonsignificant reduction of the T-cell response was reported at T6 vs. T1. T-cell response was found in 65.7% of the RA patients at T6, with lower significant magnitude in patients under CTLA-4-Ig compared to HCWs (p < 0.0001). The SARS-CoV-2 IFN-γ-S-specific T-cell response was mainly detected in the CD4+ T-cell compartment.ConclusionsIn this study, in RA patients after 6 months from COVID-19 vaccination, we show the kinetics, waning, and impairment of the humoral and, to a less extent, of the T-cell response. Similarly, a reduction of the specific response was also observed in the controls. Therefore, based on these results, a booster dose of the vaccine is crucial to increase the specific immune response regardless of the immunosuppressive therapy.
Project description:To construct a model of the antibody response to COVID-19 vaccination in patients with rheumatoid arthritis (RA), and to identify clinical factors affecting the antibody response. A total of 779 serum samples were obtained from 550 COVID-19-naïve RA patients who were vaccinated against COVID-19. Antibody titers for the receptor binding domain (anti-RBD) and nucleocapsid (anti-N) were measured. The time from vaccination, and the log-transformed anti-RBD titer, were modeled using a fractional polynomial method. Clinical factors affecting antibody responses were analyzed by a regression model using generalized estimating equation. The anti-RBD titer peaked at about 2 weeks post-vaccination and decreased exponentially to 36.5% of the peak value after 2 months. Compared with the first vaccination, the 3rd or 4th vaccinations shifted the peaks of anti-RBD antibody response curves significantly upward (by 28-fold [4-195] and 32-fold [4-234], respectively). However, there was no significant shift in the peak from the 3rd vaccination to the 4th vaccination (p = 0.64). Multivariable analysis showed that sulfasalazine increased the vaccine response (by 1.49-fold [1.13-1.97]), but abatacept or JAK inhibitor decreased the vaccine response (by 0.13-fold [0.04-0.43] and 0.44-fold [0.26-0.74], respectively). Age was associated with lower ln [anti-RBD] values (coefficient: - 0.03 [- 0.04 to - 0.02]). In conclusion, the anti-RBD response of RA patients peaked at 2 weeks after COVID-19 vaccination, and then decreased exponentially, with the maximum peak increase observed after the 3rd vaccination. The antibody response was affected by age and the medications used to treat RA.
Project description:BackgroundTo investigate the factors that have significant impact on the Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) infection and vaccination induced immune response in rheumatoid arthritis (RA).MethodsSerological response was measured by quantifying anti-SARS-CoV-2 specific antibodies, while the cell-mediated response was measured by a whole-blood test quantifying the interferon (IFN)-γ response to different SARS-CoV-2-specific domains.ResultsWe prospectively enrolled 109 RA patients and 43 healthy controls. The median time (IQR) between the confirmed infection or the last vaccination dose and the day when samples were taken ("sampling interval") was 3.67 (2.03, 5.50) months in the RA group. Anti-Spike (anti-S) specific antibodies were detected in 94% of RA patients. Among the investigated patient related variables, age (p<0.004), sampling interval (p<0.001), the brand of the vaccine (p<0.001) and targeted RA therapy (TNF-inhibitor, IL-6 inhibitor, anti-CD20 therapy) had significant effect on the anti-S levels. After covariate adjustment TNF-inhibitor therapy decreased the anti-S antibody concentrations by 80% (p<0.001). The same figures for IL-6 inhibitor and anti-CD20 therapy were 74% (p=0.049) and 97% (p=0.002), respectively. Compared to subjects who were infected but were not vaccinated, the RNA COVID-19 vaccines increased the anti-S antibody levels to 71.1 (mRNA-1273) and 36.0 (BNT162b2) fold (p<0.001). The corresponding figure for the ChAdOx1s vaccine is 18.1(p=0.037). Anti-CCP (anti-cyclic citrullinated peptides) positive patients had 6.28 times (p= 0.00165) higher anti-S levels, than the anti-CCP negative patients. Positive T-cell response was observed in 87% of the healthy volunteer group and in 52% of the RA patient group. Following vaccination or infection it declined significantly (p= 0.044) but more slowly than that of anti-S titer (6%/month versus 25%). Specific T-cell responses were decreased by 65% in patients treated with anti-CD20 therapy (p=0.055).ConclusionOur study showed that the SARS-CoV-2-specific antibody levels were substantially reduced in RA patients treated with TNF-α-inhibitors (N=51) and IL-6-inhibitor (N=15). In addition, anti-CD20 therapy (N=4) inhibited both SARS-CoV-2-induced humoral and cellular immune responses. Furthermore, the magnitude of humoral and cellular immune response was dependent on the age and decreased over time. The RNA vaccines and ChAdOx1s vaccine effectively increased the level of anti-S antibodies.
Project description:INTRODUCTION: Psychological stress may alter immune function by activating physiological stress pathways. Building on our previous study, in which we report that stress management training led to an altered self-reported and cortisol response to psychological stress in patients with rheumatoid arthritis (RA), we explored the effects of this stress management intervention on the immune response to a psychological stress task in patients with RA. METHODS: In this study, 74 patients with RA, who were randomly assigned to either a control group or a group that received short stress management training, performed the Trier Social Stress Test (TSST) 1 week after the intervention and at a 9-week follow-up. Stress-induced changes in levels of key cytokines involved in stress and inflammatory processes (for example, interleukin (IL)-6 and IL-8) were assessed. RESULTS: Basal and stress-induced cytokine levels were not significantly different in patients in the intervention and control groups one week after treatment, but stress-induced IL-8 levels were lower in patients in the intervention group than in the control group at the follow-up assessment. CONCLUSIONS: In line with our previous findings of lower stress-induced cortisol levels at the follow-up of stress management intervention, this is the first study to show that relatively short stress management training might also alter stress-induced IL-8 levels in patients with RA. These results might help to determine the role of immunological mediators in stress and disease. TRIAL REGISTRATION: The Netherlands National Trial Register (NTR1193)
Project description:B and T cell responses were evaluated in patients with rheumatoid arthritis (RA) or psoriatic arthritis (PsA) after 1 or 2 weeks of methotrexate (MTX) withdrawal following each COVID-19 vaccine dose and compared with those who maintained MTX. Adult RA and PsA patients treated with MTX were recruited and randomly assigned to 3 groups: MTX-maintenance (n = 72), MTX-withdrawal for 1 week (n = 71) or MTX-withdrawal for 2 weeks (n = 73). Specific antibodies to several SARS-CoV-2 antigens and interferon (IFN)-γ and interleukin (IL)-21 responses were assessed. MTX withdrawal in patients without previous COVID-19 was associated with higher levels of anti-RBD IgG and neutralising antibodies, especially in the 2-week withdrawal group and with higher IFN-γ secretion upon stimulation with pools of SARS-CoV-2 S peptides. No increment of RA/PsA relapses was detected across groups. Our data indicate that two-week MTX interruption following COVID-19 vaccination in patients with RA or PsA improves humoral and cellular immune responses.
Project description:PurposeRheumatoid arthritis (RA) is a disease associated with multiple factors. Epigenetics can affect gene expression without altering the DNA sequence. In this study, we aimed to comprehensively analyze epigenetic regulation in RA.MethodsUsing the Gene Expression Omnibus database, we identified a methylation chip, RNA-sequencing, and miRNA microarray for RA. First, we searched for DNA methylation, genes, and miRNAs associated with RA using differential analysis. Second, we determined the regulatory networks for RA-specific methylation, miRNA, and m6A using cross-analysis. Based on these three regulatory networks, we built a comprehensive epigenetic regulatory network and identified hub genes.ResultsUsing a differential analysis, we identified 16,852 differentially methylated sites, 4877 differentially expressed genes, and 32 differentially expressed miRNAs. The methylation-expression regulatory network was mainly associated with the PI3K-Akt and T-cell receptor signaling pathways. The miRNA expression regulatory network was mainly related to the MAPK and chemokine signaling pathways. M6A regulatory network was mainly associated with the MAPK signaling pathway. Additionally, five hub genes were identified in the epigenetic regulatory network: CHD3, SETD1B, FBXL19, SMARCA4, and SETD1A. Functional analysis revealed that these five genes were associated with immune cells and inflammatory responses.ConclusionWe constructed a comprehensive epigenetic network associated with RA and identified core regulatory genes. This study provides a new direction for future research on the epigenetic mechanisms of RA.
Project description:ObjectivesWe assessed the impact of tocilizumab (TCZ), a humanised monoclonal anti-interleukin-6 receptor antibody, on antibody response following administration of the 23-valent pneumococcal polysaccharide vaccine (PPV23).MethodsA total of 190 patients with rheumatoid arthritis (RA) received PPV23. Patients were classified into TCZ (n=50), TCZ + methotrexate (MTX) (n=54), MTX (n=62) and RA control (n=24) groups. We measured serotype-specific IgG concentrations of pneumococcal serotypes 6B and 23F using ELISA and functional antibody activity using a multiplexed opsonophagocytic killing assay, reported as the opsonisation indices (OIs), before and 4-6 weeks after vaccination. Positive antibody response was defined as a 2-fold or more increase in the IgG concentration or as a ≥10-fold or more increase in the OI.ResultsIgG concentrations and OIs were significantly increased in all treatment groups in response to vaccination. The TCZ group antibody response rates were comparable with those of the RA control group for each serotype. MTX had a negative impact on vaccine efficacy. Multivariate logistic analysis confirmed that TCZ is not associated with an inadequate antibody response to either serotype. No severe adverse effect was observed in any treatment group.ConclusionsTCZ does not impair PPV23 immunogenicity in RA patients, whereas antibody responses may be reduced when TCZ is used as a combination therapy with MTX.