Constitutive Behavior and Finite Element Analysis of FRP Composite and Concrete Members.
Ontology highlight
ABSTRACT: The present study concerns compressive and flexural constitutive models incorporated into an isoparametric beam finite element scheme for fiber reinforced polymer (FRP) and concrete composites, using their multi-axial constitutive behavior. The constitutive behavior of concrete was treated in triaxial stress states as an orthotropic hypoelasticity-based formulation to determine the confinement effect of concrete from a three-dimensional failure surface in triaxial stress states. The constitutive behavior of the FRP composite was formulated from the two-dimensional classical lamination theory. To predict the flexural behavior of circular cross-section with FRP sheet and concrete composite, a layered discretization of cross-sections was incorporated into nonlinear isoparametric beam finite elements. The predicted constitutive behavior was validated by a comparison to available experimental results in the compressive and flexural beam loading test.
Project description:Machine learning (ML) has emerged as an efficient and feasible technique for tackling engineering problems. Despite the numerous advantages, the implementation of ML for evaluating the fire resistance of structural members is relatively scarce, primarily due to the lack of a reliable database with a substantial number of data points. To address this knowledge gap, this paper presents a comprehensive database on the fire performance of fiber reinforced polymer (FRP) strengthened reinforced concrete (RC) beams. The database comprises over 21,000 experimental and numerical data points with varying parameters, including various geometric dimensions, FRP-strengthening levels, steel reinforcement ratio, insulation thickness and configuration, material properties, and applied load levels. The database can be implemented to train ML algorithms for developing autonomous models for predicting the fire resistance of FRP-strengthened concrete beams with varying parameters.
Project description:This study investigates the biomechanical performance of various dental materials when filled in different cavity designs and their effects on surrounding dental tissues. Finite element models of three infected teeth with different cavity designs, Class I (occlusal), Class II mesial-occlusal (MO), and Class II mesio-occluso-distal (MOD) were constructed. These cavities were filled with amalgam, composites (Young's moduli of 10, 14, 18, 22, and 26 GPa), and glass carbomer cement (GCC). An occlusal load of 600 N was distributed on the top surface of the teeth to carry out simulations. The findings revealed that von Mises stress was higher in GCC material, with cavity Class I (46.01 MPa in the enamel, 23.61 MPa in the dentin), and for cavity Class II MO von Mises stress was 43.64 MPa, 39.18 MPa in enamel and dentin respectively, while in case of cavity Class II MOD von Mises stress was 44.67 MPa in enamel, 27.5 in the dentin. The results showed that higher stresses were generated in the non-restored tooth compared to the restored one, and increasing Young's modulus of restorative composite material decreases stresses in enamel and dentin. The use of composite material showed excellent performance which can be a good viable option for restorative material compared to other restorative materials.
Project description:Five different layered-fiber reinforced Cu-UV glue composite structures were prepared, with Cu plate and wire as the reinforcing phase, and UV glue as the substrate. The volume ratio of Cu and UV glue of these structures is the same, but the difference lies in the number and diameter of Cu wires. Three-point bending tests were performed on these structures, and the bending stress-bending strain curves of different structures were measured. At the same time, the finite element method is used to simulate the three-point bending test process of different structures, and the bending stress-bending strain curves of different structures were calculated. Then the experimental and simulated strengths corresponding to different structures were obtained from the stress-strain curves obtained by experiment and simulation. These data are supplementary material for the associated research article [1].
Project description:In this study, the influence of curvilinear fibre reinforcement on the load-carrying capacity of additively manufactured continuous carbon fibre reinforced necked double shear lugs was investigated. A curvilinear fibre placement is descriptive of layers in extrusion-based continuous-fibre-reinforced additive manufacturing with carbon fibres aligned in the directions of principal stress. The alternating layered fibre trajectories follow the maximum and minimum principal stress directions due to axial tension loading derived from two-dimensional finite element analysis (FEA). The digital image correlation was utilised to monitor the strain distribution during the application of tensile load. The 2D FEA data and the tensile test results obtained were comparable, the part strength and the linear approximation of stiffness data variability were minimal and well within the acceptable range. Nondestructive fractography was performed by utilising computed tomography (CT) to analyse the fractured regions of the tensile-tested lug. The CT scanned images aided in deducing the failure phenomenon in layered lugs; process-induced voids and fibre layup undulation were identified as the cause for lug failure.
Project description:Reactive powder concrete (RPC), typically with higher compressive strength, is particularly attractive to structural engineers to apply them in infrastructures for enhancing their resistance under severe environments and loads. The main objective of the initial study presented in the paper was to investigate the behavior of two types of these new cementitious materials differing in the nature of microfibers. The RPC mixes were reinforced with steel and then with basalt microfibers. To evaluate the structural performance of developed unconventional materials, properties were investigated experimentally and compared with the control normal concrete mix. Mechanical tests indicated that dispersing fine fibers for making RPC, a mean compressive strength of 198.3 MPa and flexural strength 52.6 MPa or 23.2 MPa, respectively, were developed after 28 days of standard curing at ambient temperatures. In composite structures consisting of steel girders and a concrete slab, it is necessary to prevent the relative slip at the steel and concrete interface using shear connectors. The very high RPC strength enabled a material saving, weight-reduced application of precast construction, and particularly effective joint to steel beams. The investigation of such shear connection efficiency, in the case of the higher strength concrete deck, using standard push-out test specimens was executed. Finite element numerical models were developed. The outputs of the studies are presented in the paper.
Project description:One of the main concerns of experimental and numerical investigations regarding the behavior of fiber-reinforced polymer reinforced concrete (FRP-RC) members is their fire resistance to elevated temperatures and structural performance at and after fire exposure. However, the data currently available on the behavior of fiber-reinforced polymer (FRP) reinforced members related to elevated temperatures are scarce, specifically relating to the strength capacity of beams after being subjected to elevated temperatures. This paper investigates the residual strength capacity of beams strengthened internally with various (FRP) reinforcement types after being subjected to high temperatures, reflecting the conditions of a fire. The testing was made for concrete beams reinforced with three different types of FRP bars: (i) basalt-FRP (BFRP), (ii) hybrid FRP with carbon and basalt fibers (HFRP) and (iii) nano-hybrid FRP (nHFRP), with modification of the epoxy matrix of the rebar. Tested beams were first loaded at 50% of their ultimate strength capacity, then unloaded before being heated in a furnace and allowed to cool, and finally reloaded flexurally until failure. The results show an atypical behavior observed for HFRP bars and nHFRP bars reinforced beams, where after a certain temperature threshold the deflection began to decrease. The authors suggest that this phenomenon is connected with the thermal expansion coefficient of the carbon fibers present in HFRP and nHFRP bars and therefore creep can appear in those fibers, which causes an effect of "prestressing" of the beams.
Project description:This work deals with the innovated complex process of tree risk assessment, from precise geometrical tree shape acquisition to building and analyzing a finite element model under specified load. The acquisition of the 3D geometry of the tree was performed by means of terrestrial laser scanning. Obtained point cloud was optimized and additionally converted to a 3D CAD model, representing the bearing skeleton compound of trunk and main branches. For structural analysis purposes, a finite element model (FEM) was built in the form of beam structure fixed to the ground. Particular beams were defined by geometry, material properties of wood, and cross sections. An acoustic tomography was applied for determination of the precise cross section on investigated locations of an analysis model. Finite element analysis performed on the computational model shows the bearing capacity and deformations of the whole tree structure caused by combinations of load cases like self-weight and static equivalent of wind load. The results of the structural analysis called attention to potentially dangerous places within the tree structure with extreme node displacements or tensile stresses on beams. Thus, we observed a maximal horizontal displacement of 280.4 mm in node N34 and dangerous tensile stress in node N26, where it reaches +23.6 MPa. After filtering some beams with an abnormal cross section geometry, the finite element analysis of the whole tree structure showed the highest tensile stress of +8.8 MPa and highest compressive stress of -8.9 MPa. The suggested method can be applied generally for the prediction of potentially risky tree suspected of breakage and especially for monumental trees, where the presented method can be mostly applicable.
Project description:Purpose of reviewFracture fixation aims to provide stability and promote healing, but remains challenging in unstable and osteoporotic fractures with increased risk of construct failure and nonunion. The first part of this article reviews the clinical motivation behind finite element analysis of fracture fixation, its strengths and weaknesses, how models are developed and validated, and how outputs are typically interpreted. The second part reviews recent modeling studies of the femur and proximal humerus, areas with particular relevance to fragility fractures.Recent findingsThere is some consensus in the literature around how certain modeling aspects are pragmatically formulated, including bone and implant geometries, meshing, material properties, interactions, and loads and boundary conditions. Studies most often focus on predicted implant stress, bone strain surrounding screws, or interfragmentary displacements. However, most models are not rigorously validated. With refined modeling methods, improved validation efforts, and large-scale systematic analyses, finite element analysis is poised to advance the understanding of fracture fixation failure, enable optimization of implant designs, and improve surgical guidance.
Project description:PurposeThe purpose of this finite element study was to compare bone and cement stresses and implant micromotions among all-polyethylene (PE) and hybrid glenoid components. The hypothesis was that, compared to all-PE components, hybrid components yield lower bone and cement stresses with smaller micromotions.MethodsImplant micromotions and cement and bone stresses were compared among 4 all PE (U-PG, U-KG, A-KG, I-KG) and 2 hybrid (E-hCG, I-hPG) virtually implanted glenoid components. Glenohumeral joint reaction forces were applied at five loading regions (central, anterior, posterior, superior and inferior). Implant failure was assumed if glenoid micromotion exceeded 75 µm or cement stresses exceeded 4 MPa. The critical cement volume (CCV) was based on the percentage of cement volume that exceeded 4 MPa. Results were pooled and summarized in boxplots, and differences evaluated using pairwise Wilcoxon Rank Sum tests.ResultsDifferences in cement stress were found only between the I-hPG hybrid component (2.9 ± 1.0 MPa) and all-PE keeled-components (U-KG: 3.8 ± 0.9 MPa, p = 0.017; A-KG: 3.6 ± 0.5 MPa, p = 0.014; I-KG: 3.6 ± 0.6 MPa, p = 0.040). There were no differences in cortical and trabecular bone stresses among glenoid components. The E-hCG hybrid component exceeded micromotions of 75 µm in 2 patients. There were no differences in %CCV among glenoid components.ConclusionsFinite element analyses reveal that compared to all-PE glenoid components, hybrid components yield similar average stresses within bone and cement. Finally, risk of fatigue failure of the cement mantle is equal for hybrid and all-PE components, as no difference in %CCV was observed.Level of evidenceIV, in-silico.