Fast and accurate HLA typing from short-read next-generation sequence data with xHLA.
Ontology highlight
ABSTRACT: The HLA gene complex on human chromosome 6 is one of the most polymorphic regions in the human genome and contributes in large part to the diversity of the immune system. Accurate typing of HLA genes with short-read sequencing data has historically been difficult due to the sequence similarity between the polymorphic alleles. Here, we introduce an algorithm, xHLA, that iteratively refines the mapping results at the amino acid level to achieve 99-100% four-digit typing accuracy for both class I and II HLA genes, taking only [Formula: see text]3 min to process a 30× whole-genome BAM file on a desktop computer.
Project description:MotivationThe human leukocyte antigen (HLA) gene cluster plays a crucial role in adaptive immunity and is thus relevant in many biomedical applications. While next-generation sequencing data are often available for a patient, deducing the HLA genotype is difficult because of substantial sequence similarity within the cluster and exceptionally high variability of the loci. Established approaches, therefore, rely on specific HLA enrichment and sequencing techniques, coming at an additional cost and extra turnaround time.ResultWe present OptiType, a novel HLA genotyping algorithm based on integer linear programming, capable of producing accurate predictions from NGS data not specifically enriched for the HLA cluster. We also present a comprehensive benchmark dataset consisting of RNA, exome and whole-genome sequencing data. OptiType significantly outperformed previously published in silico approaches with an overall accuracy of 97% enabling its use in a broad range of applications.
Project description:Allele-level resolution data at primary HLA typing is the ideal for most histocompatibility testing laboratories. Many high-throughput molecular HLA typing approaches are unable to determine the phase of observed DNA sequence polymorphisms, leading to ambiguous results. The use of higher resolution methods is often restricted due to cost and time limitations. Here we report on the feasibility of using Pacific Biosciences' Single Molecule Real-Time (SMRT) DNA sequencing technology for high-resolution and high-throughput HLA typing. Seven DNA samples were typed for HLA-A, -B and -C. The results showed that SMRT DNA sequencing technology was able to generate sequences that spanned entire HLA Class I genes that allowed for accurate allele calling. Eight novel genomic HLA class I sequences were identified, four were novel alleles, three were confirmed as genomic sequence extensions and one corrected an existing genomic reference sequence. This method has the potential to revolutionize the field of HLA typing. The clinical impact of achieving this level of resolution HLA typing data is likely to considerable, particularly in applications such as organ and blood stem cell transplantation where matching donors and recipients for their HLA is of utmost importance.
Project description:MOSAIK is a stable, sensitive and open-source program for mapping second and third-generation sequencing reads to a reference genome. Uniquely among current mapping tools, MOSAIK can align reads generated by all the major sequencing technologies, including Illumina, Applied Biosystems SOLiD, Roche 454, Ion Torrent and Pacific BioSciences SMRT. Indeed, MOSAIK was the only aligner to provide consistent mappings for all the generated data (sequencing technologies, low-coverage and exome) in the 1000 Genomes Project. To provide highly accurate alignments, MOSAIK employs a hash clustering strategy coupled with the Smith-Waterman algorithm. This method is well-suited to capture mismatches as well as short insertions and deletions. To support the growing interest in larger structural variant (SV) discovery, MOSAIK provides explicit support for handling known-sequence SVs, e.g. mobile element insertions (MEIs) as well as generating outputs tailored to aid in SV discovery. All variant discovery benefits from an accurate description of the read placement confidence. To this end, MOSAIK uses a neural-network based training scheme to provide well-calibrated mapping quality scores, demonstrated by a correlation coefficient between MOSAIK assigned and actual mapping qualities greater than 0.98. In order to ensure that studies of any genome are supported, a training pipeline is provided to ensure optimal mapping quality scores for the genome under investigation. MOSAIK is multi-threaded, open source, and incorporated into our command and pipeline launcher system GKNO (http://gkno.me).
Project description:BackgroundMulti-locus sequence typing (MLST) has become the gold standard for population analyses of bacterial pathogens. This method focuses on the sequences of a small number of loci (usually seven) to divide the population and is simple, robust and facilitates comparison of results between laboratories and over time. Over the last decade, researchers and population health specialists have invested substantial effort in building up public MLST databases for nearly 100 different bacterial species, and these databases contain a wealth of important information linked to MLST sequence types such as time and place of isolation, host or niche, serotype and even clinical or drug resistance profiles. Recent advances in sequencing technology mean it is increasingly feasible to perform bacterial population analysis at the whole genome level. This offers massive gains in resolving power and genetic profiling compared to MLST, and will eventually replace MLST for bacterial typing and population analysis. However given the wealth of data currently available in MLST databases, it is crucial to maintain backwards compatibility with MLST schemes so that new genome analyses can be understood in their proper historical context.ResultsWe present a software tool, SRST, for quick and accurate retrieval of sequence types from short read sets, using inputs easily downloaded from public databases. SRST uses read mapping and an allele assignment score incorporating sequence coverage and variability, to determine the most likely allele at each MLST locus. Analysis of over 3,500 loci in more than 500 publicly accessible Illumina read sets showed SRST to be highly accurate at allele assignment. SRST output is compatible with common analysis tools such as eBURST, Clonal Frame or PhyloViz, allowing easy comparison between novel genome data and MLST data. Alignment, fastq and pileup files can also be generated for novel alleles.ConclusionsSRST is a novel software tool for accurate assignment of sequence types using short read data. Several uses for the tool are demonstrated, including quality control for high-throughput sequencing projects, plasmid MLST and analysis of genomic data during outbreak investigation. SRST is open-source, requires Python, BWA and SamTools, and is available from http://srst.sourceforge.net.
Project description:Somatic structural variants (SVs), which are variants that typically impact >50 nucleotides, play a significant role in cancer development and evolution but are notoriously more difficult to detect than small variants from short-read next-generation sequencing (NGS) data. This is due to a combination of challenges attributed to the purity of tumour samples, tumour heterogeneity, limitations of short-read information from NGS and sequence alignment ambiguities. In spite of active development of SV detection tools (callers) over the past few years, each method has inherent advantages and limitations. In this review, we highlight some of the important factors affecting somatic SV detection and compared the performance of seven commonly used SV callers. In particular, we focus on the extent of change in sensitivity and precision for detecting different SV types and size ranges from samples with differing variant allele frequencies and sequencing depths of coverage. We highlight the reasons for why some SV callers perform well in some settings but not others, allowing our evaluation findings to be extended beyond the seven SV callers examined in this paper. As the importance of large SVs become increasingly recognized in cancer genomics, this paper provides a timely review on some of the most impactful factors influencing somatic SV detection that should be considered when choosing SV callers.
Project description:BackgroundThe rapid advancements in the field of genome sequencing are aiding our understanding on many biological systems. In the last five years, computational biologists and bioinformatics specialists have come up with newer, better and more efficient tools towards the discovery, analysis and interpretation of different genomic variants from high-throughput sequencing data. Availability of reliable simulated dataset is essential and is the first step towards testing any newly developed analytical tools for variant discovery. Although there are tools currently available that can simulate variants, none present the possibility of simulating all the three major types of variations (Single Nucleotide Polymorphisms, Insertions and Deletions and Copy Number Variations) and can generate reads taking a realistic error-model into consideration. Therefore, an efficient simulator and read generator is needed that can simulate variants taking the error rates of true biological samples into consideration.ResultsWe report SInC (Snp, Indel and Cnv) an open-source variant simulator and read generator capable of simulating all the three common types of biological variants taking into account a distribution of base quality score from a most commonly used next-generation sequencing instrument from Illumina. SInC is capable of generating single- and paired-end reads with user-defined insert size and with high efficiency compared to the other existing tools. SInC, due to its multi-threaded capability during read generation, has a low time footprint. SInC is currently optimised to work in limited infrastructure setup and can efficiently exploit the commonly used quad-core desktop architecture to simulate short sequence reads with deep coverage for large genomes.ConclusionsWe have come up with a user-friendly multi-variant simulator and read-generator tools called SInC. SInC can be downloaded from http://sourceforge.net/projects/sincsimulator.
Project description:Commonly used methods for inferring phylogenies were designed before the emergence of high-throughput sequencing and can generally not accommodate the challenges associated with noisy, diploid sequencing data. In many applications, diploid genomes are still treated as haploid through the use of ambiguity characters; while the uncertainty in genotype calling-arising as a consequence of the sequencing technology-is ignored. In order to address this problem, we describe two new probabilistic approaches for estimating genetic distances: distAngsd-geno and distAngsd-nuc, both implemented in a software suite named distAngsd. These methods are specifically designed for next-generation sequencing data, utilize the full information from the data, and take uncertainty in genotype calling into account. Through extensive simulations, we show that these new methods are markedly more accurate and have more stable statistical behaviors than other currently available methods for estimating genetic distances-even for very low depth data with high error rates.
Project description:Motivation: Metagenomic and metatranscriptomic sequencing have become increasingly popular tools for producing massive amounts of short-read data, often used for the reconstruction of draft genomes or the detection of (active) genes in microbial communities. Unfortunately, sequence assemblies of such datasets generally remain a computationally challenging task. Frequently, researchers are only interested in a specific group of organisms or genes; yet, the assembly of multiple datasets only to identify candidate sequences for a specific question is sometimes prohibitively slow, forcing researchers to select a subset of available datasets to address their question. Here, we present PhyloMagnet, a workflow to screen meta-omics datasets for taxa and genes of interest using gene-centric assembly and phylogenetic placement of sequences.Results: Using PhyloMagnet, we could identify up to 87% of the genera in an in vitro mock community with variable abundances, while the false positive predictions per single gene tree ranged from 0 to 23%. When applied to a group of metagenomes for which a set of metagenome assembled genomes (MAGs) have been published, we could detect the majority of the taxonomic labels that the MAGs had been annotated with. In a metatranscriptomic setting, the phylogenetic placement of assembled contigs corresponds to that of transcripts obtained from transcriptome assembly.Availability and implementation: PhyloMagnet is built using Nextflow, available at github.com/maxemil/PhyloMagnet and is developed and tested on Linux. It is released under the open source GNU GPL licence and documentation is available at phylomagnet.readthedocs.io. Version 0.5 of PhyloMagnet was used for all benchmarking experiments.Supplementary information: Supplementary data are available at Bioinformatics online.
Project description:Comprehensive sequence characterization across the MHC is important for successful organ transplantation and genetic association studies. To this end, we have developed an automated sample preparation, molecular barcoding and multiplexing protocol for the amplification and sequence-determination of class I HLA loci. We have coupled this process to a novel HLA calling algorithm to determine the most likely pair of alleles at each locus.We have benchmarked our protocol with 270 HapMap individuals from four worldwide populations with 96.4% accuracy at 4-digit resolution. A variation of this initial protocol, more suitable for large sample sizes, in which molecular barcodes are added during PCR rather than library construction, was tested on 95 HapMap individuals with 98.6% accuracy at 4-digit resolution.Next-generation sequencing on the 454 FLX Titanium platform is a reliable, efficient, and scalable technology for HLA typing.
Project description:MotivationThe enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals.ResultsWe implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows-Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is approximately 10-20x faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package.Availabilityhttp://maq.sourceforge.net.