Comment on "How will induced seismicity in Oklahoma respond to decreased saltwater injection rates?" by C. Langenbruch and M. D. Zoback.
Ontology highlight
ABSTRACT: The state of Oklahoma has experienced an unprecedented increase in earthquake activity since 2009, likely driven by large-scale wastewater injection operations. Statewide injection rates peaked in early 2015 and steadily decreased thereafter, approximately coinciding with collapsing oil prices and regulatory action. If seismic activity is primarily driven by fluid injection, a noticeable seismogenic response to the decrease in injection rates is expected. Langenbruch and Zoback suggest that "the probability of potentially damaging larger events, should significantly decrease by the end of 2016 and approach historic levels within a few years." We agree that the rate of small earthquakes has decreased toward the second half of 2016. However, their specific predictions about seismic hazard require reexamination. We test the influence of the model parameters of Langenbruch and Zoback based on fits to observed seismicity distributions. The results suggest that a range of realistic aftershock decay rates and b values can lead to an increase in moderate earthquake probabilities from 37 to 80% in 2017 without any further alteration to the model. In addition, the observation that all four M ≥ 5 earthquakes to date occurred when injection rates were below the triggering threshold of Langenbruch and Zoback challenges the applicability of the model for the most societally significant events.
Project description:Goebel et al. question our forecasted response of induced seismicity to reduction of saltwater injection rates in north-central Oklahoma and raise the concern that "the probability of future damaging earthquakes may be underestimated." We compare our prediction to earthquake data recorded in the 8 months after publication. Observed seismicity rates and magnitudes agree with the forecast of our model. Our use of a probabilistic model accounts for uncertainties and observed M ≥ 4.5 to date confirm the conservative nature of our prediction. The "realistic parameter range" suggested by Goebel et al. is based on a misunderstanding of our statistical model and disagrees with the long-term decay of seismicity in the region.
Project description:In response to the marked number of injection-induced earthquakes in north-central Oklahoma, regulators recently called for a 40% reduction in the volume of saltwater being injected in the seismically active areas. We present a calibrated statistical model that predicts that widely felt M ≥ 3 earthquakes in the affected areas, as well as the probability of potentially damaging larger events, should significantly decrease by the end of 2016 and approach historic levels within a few years. Aftershock sequences associated with relatively large magnitude earthquakes that occurred in the Fairview, Cherokee, and Pawnee areas in north-central Oklahoma in late 2015 and 2016 will delay the rate of seismicity decrease in those areas.
Project description:BackgroundBacterial infection is a major cause of morbidity and mortality for persons who inject drugs (PWID). Injection cessation may help abrogate such infections, but maintaining complete cessation is challenging. Limited data exists on the role of reduced injection intensity on invasive bacterial infection risk. We sought to evaluate decreased risk for bacterial infections following cessation and substantive reduction in the injection intensity.MethodsParticipants were persons in the AIDS Linked to the Intravenous Experience (ALIVE) cohort with initial high-frequency injection drug use (> 1 daily). Pooled logistic regression with generalized estimating equations was used to estimate risk for invasive bacterial infection (pneumonia, endocarditis, or sepsis) among participants achieving complete injection cessation or reduced injection intensity relative to those with sustained high-frequency use.ResultsOf 2247 study participants with 12,469 paired study visits, complete injection cessation was achieved at 13.5% and reduced injection intensity at 25.5% of study visits. Adjusting for sociodemographics and HIV status, injection cessation was associated with a 54% reduction of bacterial infection at 3 months (odds ratio [OR] 0.46, 95% CI 0.25-0.84) and a 46% reduction at 6 months (OR 0.54, 95% CI 0.36-0.81). Reduced injection intensity was associated with a 36% reduction of infection at 3 months (OR 0.64, 95% CI 0.43-0.96) and a 26% reduction at 6 months (OR 0.74, 95% CI 0.56-0.98).ConclusionsBoth complete cessation and reduced injection frequency demonstrate substantial benefit in reducing invasive bacterial infection risk among PWID. With high rates of relapse into injection use, targeting sustained reductions in drug use intensity may be a key harm reduction modality for improving clinical outcomes in this population.
Project description:Ruby et al. recently analyzed historical lifespan data on more than 3200 naked mole-rats, collected over a total observation period of about 38 years (Ruby et al., 2018). They report that mortality hazards do not seem to increase across the full range of their so-far-observed lifespan, and conclude that this defiance of Gompertz's law 'uniquely identifies the naked mole-rat as a non-aging mammal'. Here, we explain why we believe this conclusion is premature.
Project description:Some models of vaccination behavior imply that an individual's willingness to vaccinate could be negatively correlated with the vaccination rate in her community. The rationale is that a higher community vaccination rate reduces the risk of contracting the vaccine-preventable disease and thus reduces the individual's incentive to vaccinate. At the same time, as for many health-related behaviors, individuals may want to conform to the vaccination behavior of peers, counteracting a reduced incentive to vaccinate due to herd immunity. Currently there is limited empirical evidence on how individual vaccination decisions respond to the vaccination decisions of peers. In the fall of 2014, we used a rapid survey technology to ask a large sample of U.S. adults about their willingness to use a vaccine for Ebola. Respondents expressed a greater inclination to use the vaccine in a hypothetical scenario with a high community vaccination rate. In particular, an increase in the community vaccination rate from 10% to 90% had the same impact on reported utilization as a nearly 50% reduction in out-of-pocket cost. These findings are consistent with a tendency to conform with vaccination among peers, and suggest that policies promoting vaccination could be more effective than has been recognized.
Project description:PurposeTo determine whether there is a difference in the risk of endophthalmitis after an intravitreal steroid injection compared with an anti-vascular endothelial growth factor (VEGF) agent injection.DesignRetrospective cohort study.ParticipantsA total of 75,249 beneficiaries in a large national US medical claims database representing 406 380 intravitreal injections.MethodsData were searched for all intravitreal injections (Current Procedural Terminology 67028) performed between 2003 and 2012. Cohorts were created on the basis of injections using anti-VEGF agents (bevacizumab, ranibizumab, aflibercept, and pegaptanib) and intraocular steroids (triamcinolone and dexamethasone). Endophthalmitis was defined as having a new endophthalmitis diagnosis (International Classification of Diseases 9th Revision 360.0x) and a "tap-and-inject" procedure (Current Procedural Terminology 67015, 67025), a vitrectomy (67036), or an intravitreal antibiotic injection on the same day, between 1 and 14 days post-injection. Exclusion occurred for any history of endophthalmitis, <6 months in the plan, or <1 month follow-up. The main outcome measure was the odds of endophthalmitis using logistic regression while controlling for injection-associated diagnosis, age, race, and gender.ResultsA total of 387,714 anti-VEGF injections and 18 666 steroid intravitreal injections were performed and followed by 73 (rate=0.019% or 1/5283 anti-VEGF injections) and 24 (rate=0.13% or 1/778 steroid injections) cases of endophthalmitis, respectively. After controlling for diagnosis, age, race, and gender, the odds ratio (OR) for endophthalmitis occurring was 6.92 (95% confidence interval, 3.54-13.52, P<0.001) times higher post-steroid injection compared with anti-VEGF injections.ConclusionsThe rate of endophthalmitis post-intravitreal steroid injection in a national cohort was 0.13% (1/778 injections). This rate conferred a significantly increased OR of 6.92 for endophthalmitis compared with anti-VEGF agents.
Project description:Microglia are the chief immune cells of the brain and have been reported to be activated in severe malaria. Their activation may drive towards neuroinflammation in cerebral malaria. Malaria-infected red blood cell derived-extracellular vesicles (MiREVs) are produced during the blood stage of malaria infection. They mediate intercellular communication and immune regulation, among other functions. During cerebral malaria, the breakdown of the blood-brain barrier can promote the migration of substances such as MiREVs from the periphery into the brain, targeting cells such as microglia. Microglia and extracellular vesicle interactions in different pathological conditions have been reported to induce neuroinflammation. Unlike in astrocytes, microglia-extracellular vesicle interaction has not yet been described in malaria infection. Therefore, in this study, we aimed to investigate the uptake of MiREVs by human microglia cells and their cytokine response. Human blood monocyte-derived microglia (MoMi) were generated from buffy coats of anonymous healthy donors using Ficoll-Paque density gradient centrifugation. The MiREVs were isolated from the Plasmodium falciparum cultures. They were purified by ultracentrifugation and labeled with PKH67 green fluorescent dye. The internalization of MiREVs by MoMi was observed after 4 h of co-incubation on coverslips placed in a 24-well plate at 37 °C using confocal microscopy. Cytokine-gene expression was investigated using rt-qPCR, following the stimulation of the MoMi cells with supernatants from the parasite cultures at 2, 4, and 24 h, respectively. MiREVs were internalized by the microglia and accumulated in the perinuclear region. MiREVs-treated cells increased gene expression of the inflammatory cytokine TNFα and reduced gene expression of the immune suppressive IL-10. Overall, the results indicate that MiREVs may act on microglia, which would contribute to enhanced inflammation in cerebral malaria.
Project description:The evolution and the growth of the continental crust is inextricably linked to the evolution of Earth's geodynamic processes. The detrital zircon record within the continental crust, as well as the isotopic composition of this crust, indicates that the amount of juvenile felsic material decreased with time and that in geologically recent times, the generation of new crust is balanced by recycling of the crust back into the mantle within subduction zones. However it cannot always have been so; yet the nature of the crust and the processes of crustal reworking in the Precambrian Earth are not well constrained. Here we use both detrital zircon ages and metamorphic pressure-temperature-time (P-T-t) information from metasedimentary units deposited in proposed convergent settings from Archaean, Proterozoic and Phanerozoic terrains to characterize the evolution of minimum estimates of burial rate (km.Ma(-1)) as a function of the age of the rocks. The demonstrated decrease in burial rate correlates positively with a progressive decrease in the production of juvenile felsic crust in the Archaean and Proterozoic. Burial rates are also more diverse in the Archaean than in modern times. We interpret these features to reflect a progressive decrease in the diversity of tectonic processes from Archaean to present, coupled with the emergence of the uniquely Phanerozoic modern-style collision.