Regression of the Anatomic Cardiac Features of Amyloid Light Chain Cardiac Amyloidosis Accompanied by Normalization of Global Longitudinal Strain.
Ontology highlight
ABSTRACT: Highlights•The first documented case of amyloid light chain cardiac amyloidosis with normalization of average global longitudinal strain is presented.•This is further evidence of regression of cardiac amyloidosis after stem cell transplantation.•Global longitudinal strain may be a ready visual marker of prognosis, regression, and recovery.
Project description:Cardiac dysfunction in AL amyloidosis is thought to be partly related to the direct impact of AL LCs on cardiomyocyte function, with the degree of dysfunction at diagnosis as a major determinant of clinical outcomes. Nonetheless, mechanisms underlying LC-induced myocardial toxicity remain unclear. We identified gene expression changes correlating with human cardiac cell exposure to cardiomyopathy-associated AL LCs. We then confirmed these findings in a clinical dataset focusing on clinical parameters associated with pathways dysregulated at the gene expression level. Upon exposure to cardiomyopathy-associated AL LCs, cardiac cells exhibited gene expression changes related to myocardial contractile function and inflammation, leading us to hypothesize that there could be clinically detectable changes in global longitudinal strain (GLS) on echocardiogram and serum inflammatory markers in patients. Thus, we identified 29 patients with normal interventricular septum diameter (IVSd) but abnormal cardiac biomarkers, suggestive of LC-induced cardiac dysfunction. These patients display early cardiac biomarker staging, abnormal GLS, and significantly reduced serum inflammatory markers compared to patients with clinically evident amyloid fibril deposition. Collectively, our findings highlight early molecular and functional signatures of cardiac AL amyloidosis, with potential impact for developing improved patient biomarkers and novel therapeutics.
Project description:BackgroundAmyloid light-chain (AL) amyloidosis is an ultra-rare disease associated with significant morbidity and mortality. Few studies have examined the global epidemiology of this condition.MethodsThis study estimated the diagnosed incidence and 1-year, 5-year, 10-year, and 20-year period prevalence of AL amyloidosis in 2018 for countries in and near Europe, and in the United States (US), Canada, Brazil, Japan, South Korea, Taiwan, and Russia. A systematic literature review (SLR) was conducted to identify country-specific, age- and gender-specific diagnosed incidence of AL amyloidosis and observed survival data-point inputs for an incidence-to-prevalence model. Extrapolations were used to estimate incidence and prevalence for countries without registry or published epidemiological data.ResultsOf 171 publications identified in the SLR, 10 records met the criteria for data extraction, and two records were included in the final incidence-to-prevalence model. In 2018, an estimated 74,000 AL amyloidosis cases worldwide were diagnosed during the preceding 20 years. The estimated incidence and 20-year prevalence rates were 10 and 51 cases per million population, respectively.ConclusionsOrphan medicinal product designation criteria of the European Medicines Agency or Electronic Code of Federal Regulations indicate that a disease must not affect > 5 in 10,000 people across the European Union or affect < 200,000 people in the US. This study provides up-to-date epidemiological patterns of AL amyloidosis, which is vital for understanding the burden of the disease, increasing awareness, and to further research and treatment options.
Project description:AimsIn patients with transthyretin amyloid cardiomyopathy (ATTR-CM), the effect of tafamidis on myocardial function using serial speckle tracking echocardiography has not been reported. The purpose of this study was to describe the natural history of myocardial function in untreated ATTR-CM and determine the effect of tafamidis on myocardial functional parameters over 12 months of treatment.Methods and resultsA total of 45 subjects with ATTR-CM were retrospectively studied: 23 treated with tafamidis and 22 untreated. Two-dimensional speckle tracking echocardiography was analysed at baseline and 1 year. Serial longitudinal, circumferential, and radial strain, twist, torsion, and myocardial work were measured. Over 1 year, absolute global longitudinal strain (GLS) deteriorated more in the untreated group by a median of 1.1% [inter-quartile range (IQR) 0.95] compared with 0.3% (IQR 1) in the tafamidis group (P = 0.02). Myocardial work index and efficiency also deteriorated to a greater degree: 142.5 mmHg% (IQR 197) and 4% (IQR 8), respectively, in the untreated group compared with 61.5 mmHg% (IQR 210) and 1% (IQR 7) in the tafamidis group (P = 0.04). There were no significant between group differences in left ventricular ejection fraction (LVEF), tissue Doppler velocities, circumferential or radial strain, LV twist or torsion at 1 year. The stabilization effect of tafamidis on myocardial function at 1 year did not differ according to baseline GLS, LVEF, or National Amyloidosis Centre disease stage.ConclusionsIn ATTR-CM, tafamidis resulted in a lesser deterioration in GLS, myocardial work index, and efficiency over a 12-month period compared with a cohort not treated with tafamidis.
Project description:AimsLeft ventricular (LV) global longitudinal strain (GLS) (LV-GLS) is a strong and independent predictor of outcomes in patients with immunoglobulin light-chain (AL) cardiac amyloidosis. This study was performed to investigate whether right ventricular (RV) GLS (RV-GLS) provides prognostic information in patients with AL amyloidosis.Methods and resultsAmong 74 patients who were diagnosed with AL cardiac amyloidosis at Kumamoto University Hospital from December 2005 to December 2022, 65 patients who had enough information for two-dimensional speckle tracking imaging and did not receive chemotherapy before the diagnosis of cardiac amyloidosis were retrospectively analysed. During a median follow-up of 359 days, 29 deaths occurred. In two-dimensional echocardiographic findings, LV-GLS, left atrium reservoir strain (LASr), and RV-GLS were significantly lower in the all-cause death group than in the survival group (LV-GLS: 8.9 ± 4.2 vs. 11.7 ± 3.9, P < 0.01; LASr: 9.06 ± 7.28 vs. 14.09 ± 8.32, P < 0.05; RV-GLS: 12.0 ± 5.1 vs. 16.8 ± 4.0, P < 0.01). Multivariable Cox proportional hazard analysis showed RV-GLS was significantly and independently associated with all-cause death in patients with AL cardiac amyloidosis (hazard ratio 0.85; 95% confidence interval, 0.77-0.94; P < 0.01). Receiver operating characteristic analysis showed that the area under the curve of RV-GLS for all-cause death was 0.774 and that the best cut-off value of RV-GLS was 14.5% (sensitivity, 75%; specificity, 72%). In the Kaplan-Meier analysis, patients with AL cardiac amyloidosis who had low RV-GLS (<14.5%) had a significantly higher probability of all-cause death (P < 0.01).ConclusionRV-GLS has prognostic value in patients with AL cardiac amyloidosis and provides greater prognostic power than LV-GLS and LASr.
Project description:BackgroundCardiac amyloidosis (CA) is a secondary form of cardiomyopathy where abnormal accumulation of amyloid protein in the myocardial interstitium causes cardiac hypertrophy and myocardial fibrosis. If primary CA advances to heart failure, most patients do not survive for very long after the diagnosis.Case summaryA 40-year-old man was admitted to our hospital for dyspnoea, progressive anaemia, and decreased appetite. He has diagnosed with amyloid light-chain (AL) amyloidosis. Although BD treatment (bortezomib + dexamethasone) and medical treatment were started, there was no sign of improvement. Then, high-dose chemotherapy followed by autologous peripheral blood stem cell transplantation (auto-PBSCT) was initiated. Pretreatment echocardiography revealed typical findings of CA, such as ventricular wall thickening, valvular thickening, diastolic dysfunction, and pericardial effusion. Global longitudinal strain (GLS) was significantly reduced, and bull's-eye mapping showed typical apical sparing. After auto-PBSCT, GLS gradually improved and was almost normal after 2 years. Other echocardiographic parameters, functional status, and laboratory data also showed that there was significant regression of CA.DiscussionAlthough the prognosis in primary CA is extremely poor, we achieved long-term survival in a patient with effective high-dose chemotherapy and auto-PBSCT. Global longitudinal strain may be a useful marker of prognosis, regression, and recovery.
Project description:BackgroundThe clinical value of left ventricular (LV) global longitudinal strain (GLS) in the differential diagnosis of light-chain cardiac amyloidosis (AL-CA) and hypertrophic cardiomyopathy (HCM) has been previously reported. In this study, we analyzed the potential clinical value of the LV long-axis strain (LAS) to discriminate AL-CA from HCM. Furthermore, we analyzed the association between all the LV global strain parameters derived from cardiac magnetic resonance (CMR) feature tracking and LAS in both the AL-CA and HCM patients to assess the differential diagnostic efficacies of these global peak systolic strains.Materials and methodsThus, this study enrolled 89 participants who underwent cardiac MRI (CMRI), consisting of 30 AL-CA patients, 30 HCM patients, and 29 healthy controls. The intra- and inter-observer reproducibility of the LV strain parameters including GLS, global circumferential strain (GCS), global radial strain (GRS), and LAS were assessed in all the groups and compared. Receiver operating characteristic (ROC) curve analysis was performed to determine the diagnostic performances of the CMR strain parameters in discriminating AL-CA from HCM.ResultsThe intra- and inter-observer reproducibility of the LV global strains and LAS were excellent (range of interclass correlation coefficients: 0.907-0.965). ROC curve analyses showed that the differential diagnostic performances of the global strains in discriminating AL-CA from HCM were good to excellent (GRS, AUC = 0.921; GCS, AUC = 0.914; GLS, AUC = 0.832). Furthermore, among all the strain parameters analyzed, LAS showed the highest diagnostic efficacy in differentiating between AL-CA and HCM (AUC = 0.962).ConclusionCMRI-derived strain parameters such as GLS, LAS, GRS, and GCS are promising diagnostic indicators that distinguish AL-CA from HCM with high accuracy. LAS showed the highest diagnostic accuracy among all the strain parameters.
Project description:AimCardiac involvement is the main prognostic determinant in AL amyloidosis. We sought to determine the prognostic significance of longitudinal change of left ventricular (LV) global longitudinal strain (GLS) in cardiac light chain (AL) amyloidosis patients undergoing chemotherapy.Methods and resultWe retrospectively investigated 117 cardiac AL amyloidosis patients who underwent chemotherapy from 2005 to 2019. All patients underwent comprehensive 2D conventional transthoracic echocardiography at baseline and after completion of first-line chemotherapy. Speckle tracking analysis of images was performed offline. Absolute value of LV GLS was expressed as [LV GLS] and change of [LV GLS] after chemotherapy was expressed as Δ [LV GLS]. Clinical outcomes including cardiac response and all-cause mortality were analyzed.Baseline clinical and echocardiographic parameters were similar in patients with and without CR. Δ [LV GLS] significantly differed between the CR and non-CR groups (0.4 ± 2.8% in the CR group vs. -0.6 ± 2.5% in the non-CR group, P-value = 0.046). Δ [LV GLS] showed satisfactory predictive performance for all-cause mortality (cut-off value = 0.8%, AUC 0.643, 95% CI [0.537-0.748]). Adding Δ [LV GLS] to the Mayo stage + pre-chemotherapy [LV GLS] model showed incremental prognostic value (C-index: 0.637 vs. 0.708; Relative Integrated Discrimination Index 0.07, P-value = 0.003; Net Reclassification Improvement 0.54, P-value < 0.001). Δ [LV GLS] showed good correlation with cardiac response (AUC 0.820, 95% CI [0.737-0.904]).ConclusionIn cardiac amyloidosis patients who underwent chemotherapy, longitudinal change of [LV GLS] after chemotherapy showed significant association with overall survival as well as cardiac response.
Project description:ObjectiveThis study aimed to investigate the regional amyloid burden and myocardial deformation using T1 mapping and strain values in patients with cardiac amyloidosis (CA) according to late gadolinium enhancement (LGE) patterns.Materials and methodsForty patients with CA were divided into 2 groups per LGE pattern, and 15 healthy subjects were enrolled. Global and regional native T1 and T2 mapping, extracellular volume (ECV), and cardiac magnetic resonance (CMR)-feature tracking strain values were compared in an intergroup and interregional manner.ResultsOf the patients with CA, 32 had diffuse global LGE (group 2), and 8 had focal patchy or no LGE (group 1). Global native T1, T2, and ECV were significantly higher in groups 1 and 2 than in the control group (native T1: 1384.4 ms vs. 1466.8 ms vs. 1230.5 ms; T2: 53.8 ms vs. 54.2 ms vs. 48.9 ms; and ECV: 36.9% vs. 51.4% vs. 26.0%, respectively; all, p < 0.001). Basal ECV (53.7%) was significantly higher than the mid and apical ECVs (50.1% and 50.0%, respectively; p < 0.001) in group 2. Basal and mid peak radial strains (PRSs) and peak circumferential strains (PCSs) were significantly lower than the apical PRS and PCS, respectively (PRS, 15.6% vs. 16.7% vs. 26.9%; and PCS, -9.7% vs. -10.9% vs. -15.0%; all, p < 0.001). Basal ECV and basal strain (2-dimensional PRS) in group 2 showed a significant negative correlation (r = -0.623, p < 0.001). Group 1 showed no regional ECV differences (basal, 37.0%; mid, 35.9%; and apical, 38.3%; p = 0.184).ConclusionQuantitative T1 mapping parameters such as native T1 and ECV may help diagnose early CA. ECV, in particular, can reflect regional differences in the amyloid deposition in patients with advanced CA, and increased basal ECV is related to decreased basal strain. Therefore, quantitative CMR parameters may help diagnose CA and determine its severity in patients with or without LGE.