Project description:The biology of breast cancer response to neoadjuvant therapy is underrepresented in the literature and provides a window-of-opportunity to explore the genomic and microenvironment modulation of tumours exposed to therapy. Here, we characterised the mutational, gene expression, pathway enrichment and tumour-infiltrating lymphocytes (TILs) dynamics across different timepoints of 35 HER2-negative primary breast cancer patients receiving neoadjuvant eribulin therapy (SOLTI-1007 NEOERIBULIN-NCT01669252). Whole-exome data (N = 88 samples) generated mutational profiles and candidate neoantigens and were analysed along with RNA-Nanostring 545-gene expression (N = 96 samples) and stromal TILs (N = 105 samples). Tumour mutation burden varied across patients at baseline but not across the sampling timepoints for each patient. Mutational signatures were not always conserved across tumours. There was a trend towards higher odds of response and less hazard to relapse when the percentage of subclonal mutations was low, suggesting that more homogenous tumours might have better responses to neoadjuvant therapy. Few driver mutations (5.1%) generated putative neoantigens. Mutation and neoantigen load were positively correlated (R2 = 0.94, p = <0.001); neoantigen load was weakly correlated with stromal TILs (R2 = 0.16, p = 0.02). An enrichment in pathways linked to immune infiltration and reduced programmed cell death expression were seen after 12 weeks of eribulin in good responders. VEGF was downregulated over time in the good responder group and FABP5, an inductor of epithelial mesenchymal transition (EMT), was upregulated in cases that recurred (p < 0.05). Mutational heterogeneity, subclonal architecture and the improvement of immune microenvironment along with remodelling of hypoxia and EMT may influence the response to neoadjuvant treatment.
Project description:It is well documented that human epidermal growth factor receptor 2 (HER2) overexpression/amplification is associated with poor survival in breast cancer patients. However, it is largely unknown whether HER2 somatic mutations are associated with survival in HER2-negative breast cancer patients. Here, we identified HER2 somatic mutations in tumors from 1348 unselected breast cancer patients by sequencing the entire HER2 coding region. All of these mutations were tested for in corresponding blood samples to determine whether they were somatic or germline mutations. We further investigated the associations between HER2 somatic mutations and recurrence-free survival and distant recurrence-free survival in this cohort of patients. We found that 27 of 1348 (2.0%) of these patients carried a HER2 somatic mutation. In vitro experiments indicated that some of the novel mutations and those with unknown functions increased HER2 activity. HER2 status was available for 1306 patients, and the HER2 somatic mutation rates in HER2-positive (n = 353) and HER2-negative breast cancers (n = 953) were 1.4% and 2.3%, respectively. Among the HER2-negative patients, those with a HER2 somatic mutation had a significantly worse recurrence-free survival (unadjusted hazard ratio = 2.67; 95% confidence interval, 1.25-5.72, P = 0.002) and distant recurrence-free survival (unadjusted hazard ratio = 2.50; 95% confidence interval, 1.10-5.68, P = 0.004) than those with wild-type HER2. Taken together, our findings suggested that HER2 somatic mutations occur at a higher frequency in HER2-negative breast cancer, and HER2-negative breast cancer patients with these mutations have poor survival. Therefore, HER2-negative patients with a HER2 somatic mutation are potentially good candidates for HER2-targeted therapy.
Project description:Tumors act systemically to sustain cancer progression, affecting the physiological processes in the host and triggering responses in the blood circulating cells. In this study, we explored blood transcriptional patterns of patients with two subtypes of HER2 negative breast cancers, with different prognosis and therapeutic outcome. Peripheral blood samples from seven healthy female donors and 29 women with breast cancer including 14 triple-negative breast cancers and 15 hormone-dependent breast cancers were evaluated by microarray. We also evaluated the stroma in primary tumors. Transcriptional analysis revealed distinct molecular signatures in the blood of HER2- breast cancer patients according to ER/PR status. Our data showed the implication of immune signaling in both breast cancer subtypes with an enrichment of these processes in the blood of TNBC patients. We observed a significant alteration of "chemokine signaling," "IL-8 signaling," and "communication between innate and adaptive immune cells" pathways in the blood of TNBC patients correlated with an increased inflammation and necrosis in their primary tumors. Overall, our data indicate that the presence of triple-negative breast cancer is associated with an enrichment of altered systemic immune-related pathways, suggesting that immunotherapy could possibly be synergistic to the chemotherapy, to improve the clinical outcome of these patients.
Project description:BackgroundBreast cancer subtypes Luminal A and Luminal B are classified by the expression of PAM50 genes and may benefit from different treatment strategies. Machine learning models based on H&E images may contain features associated with subtype, allowing early identification of tumors with higher risk of recurrence.MethodsH&E images (n = 630 ER+/HER2-breast cancers) were pixel-level segmented into epithelium and stroma. Convolutional neural network and multiple instance learning were used to extract image features from original and segmented images. Patient-level classification models were trained to discriminate Luminal A versus B image features in tenfold cross-validation, with or without grade adjustment. The best-performing visual classifier was incorporated into envisioned diagnostic protocols as an alternative to genomic testing (PAM50). The protocols were then compared in time-to-recurrence models.ResultsAmong ER+/HER2-tumors, the image-based protocol differentiated recurrence times with a hazard ratio (HR) of 2.81 (95% CI: 1.73-4.56), which was similar to the HR for PAM50 (2.66, 95% CI: 1.65-4.28). Grade adjustment did not improve subtype prediction accuracy, but did help balance sensitivity and specificity. Among high grade participants, sensitivity and specificity (0.734 and 0.474, respectively) became more similar (0.732 and 0.624, respectively) in grade-adjusted models. The original and epithelium-specific images had similar performance and highest accuracy, followed by stroma or binarized images showing only the epithelial-stromal interface.ConclusionsGiven low rates of genomic testing uptake nationally, image-based methods may help identify ER+/HER2-patients who could benefit from testing.
Project description:The RxPONDER and TAILORx trials demonstrated benefit from adjuvant chemotherapy in patients age ≤ 50 with node-positive breast cancer and Recurrence Score (RS) 0-26, and in node-negative disease with RS 16-25, respectively, but no benefit in older women with the same clinical features. We analyzed transcriptomic and genomic data of ER+/HER2- breast cancers with in silico RS < 26 from TCGA (n = 530), two microarray cohorts (A: n = 865; B: n = 609), the METABRIC (n = 867), and the SCAN-B (n = 1636) datasets. There was no difference in proliferation-related gene expression between age groups. Older patients had higher mutation burden and more frequent ESR1 copy number gain, but lower frequency of GATA3 mutations. Younger patients had higher rate of ESR1 copy number loss. In all datasets, younger patients had significantly lower mRNA expression of ESR1 and ER-associated genes, and higher expression of immune-related genes. The ER- and immune-related gene signatures showed negative correlation and defined three subpopulations in younger women: immune-high/ER-low, immune-intermediate/ER-intermediate, and immune-low/ER-intermediate. We hypothesize that in immune-high cancers, the cytotoxic effect of chemotherapy may drive the benefit, whereas in immune-low/ER-intermediate cancers chemotherapy induced ovarian suppression may play important role.
Project description:INTRODUCTION: In general, genomic signatures of breast cancer subtypes have little or no overlap owing to the heterogeneous genetic backgrounds of study samples. Thus, obtaining a reliable signature in the context of isogenic nature of the cells has been challenging and the precise contribution of isogenic triple negative breast cancer (TNBC) versus non-TNBC remains poorly defined. METHODS: We established isogenic stable cell lines representing TNBC and Human Epidermal Growth Factor Receptor 2 positive (HER2+) breast cancers by introducing HER2 in TNBC cell lines MDA-MB-231 and MDA-MB-468. We examined protein level expression and functionality of the transfected receptor by treatment with an antagonist of HER2. Using microarray profiling, we obtained a comprehensive gene list of differentially expressed between TNBC and HER2+ clones. We identified and validated underlying isogenic components using qPCR and also compared results with expression data from patients with similar breast cancer subtypes. RESULTS: We identified 544 and 1087 statistically significant differentially expressed genes between isogenic TNBC and HER2+ samples in MDA-MB-231 and MDA-MB-468 backgrounds respectively and a shared signature of 49 genes. By comparing results from MDA-MB-231 and MDA-MB-468 backgrounds with two patient microarray datasets, we identified 17 and 22 common genes with same expression trend respectively. Additionally, we identified 56 and 78 genes from MDA-MB-231 and MDA-MB-468 comparisons respectively present in our published RNA-seq data. CONCLUSIONS: Using our unique model system, we have identified an isogenic gene expression signature between TNBC and HER2+ breast cancer. A portion of our results was also verified in patient data samples, indicating an existence of isogenic element associated with HER2 status between genetically heterogeneous breast cancer samples. These findings may potentially contribute to the development of molecular platform that would be valuable for diagnostic and therapeutic decision for TNBC and in distinguishing it from HER2+ subtype.
Project description:HER2 and HER3 play key driving functions in the pathophysiology of HER2-amplified breast cancers, but this function is less well characterized in other cancers driven by HER2 amplification. This study aimed to explore the role of HER2 and HER3 signaling in other types of HER2-amplified cancer. The expression and signaling activity of HER2, HER3, and downstream pathway proteins were studied in cell panels representing HER2-amplified cancers of the breast, bladder, colon and rectal, stomach, esophagus, lung, tongue, and endometrium along with controls lacking HER2 amplification. We report that HER2-amplified cancers are addicted to HER2 across different cancer types and the depth of addiction is best linked with the expression level of HER2, but not with HER3 expression. We report that the expression and constitutive phosphorylation of HER3 are ubiquitous in HER2-amplified breast cancer cell lines, but much more variable in HER2-amplified cancer cells from other tissues. We observed the lapatinib-induced compensatory upregulation of HER3 signaling in many types of HER2-amplified cancers, although with much variability. We find that HER3 expression is essential for in vivo tumorigenic growth in some HER2-amplified tumors but not others. Importantly HER3 expression level does not correlate well with its functional importance. More biomarkers will be needed to guide the optimal use of HER3 inhibitors in HER2-amplified cancers from non-breast origin. Unlike oncogenes activated through mutational events, the activation of HER2 through overexpression represents a gradient of activities and depth of addiction and the response to inhibitors follows a similar gradient.
Project description:ER-positive/HER2-negative (ERpHER2n) breast cancer classified as PAM50 HER2-enriched (ERpHER2n-HER2E) represents a small high-risk patient subgroup. In this study, we investigate genomic, transcriptomic, and clinical features of ERpHER2n-HER2E breast tumors using two primary ERpHER2n cohorts comprising a total of 5640 patients. We show that ERpHER2n-HER2E tumors exhibit aggressive clinical features and poorer clinical outcomes compared to Luminal A and Luminal B tumors. Furthermore, ERpHER2n-HER2E breast cancer does not consist of misclassified or HER2-low cases, has little impact of ERBB2, is highly proliferative and less ER dependent than other luminal subtypes. It is not an obvious biological entity but is nevertheless associated with potentially targetable molecular features, notably a high immune response and high FGFR4 expression. Strikingly, molecular features that define the HER2E subtype in luminal disease are also consistent in HER2-positive disease, including an epigenetic mechanism for high FGFR4 expression in breast cancer.