Genomics

Dataset Information

0

E. coli Isoleucine starvation and stringent response network


ABSTRACT: Transcription profiling of wild type, relA-, and relA-spoT-, crp-, dksA-, rpoS-, lrp- mutant strains of E. coli starved for isoleucine Bacteria comprehensively reorganize their global gene expression when faced with nutrient exhaustion. In Escherichia coli and other free-living bacteria, the alarmone ppGpp facilitates this massive response by directly or indirectly coordinating the down-regulation of genes of the translation apparatus, and the induction of biosynthetic genes and the general stress response. Such a large reorientation likely requires the cooperative activities of many different genetic regulators, yet the structure of the transcription network below the level of ppGpp remains poorly defined. Using isoleucine starvation as an experimental model system for amino acid starvation, we identified genes that required ppGpp, Lrp, and RpoS for their induction. Surprisingly, despite the fact that the overwhelming majority of genes controlled by Lrp and RpoS required ppGpp for their activation, we found that these two regulons were not induced simultaneously. The data reported here suggest that metabolic genes, such as those of the Lrp regulon, require only a low basal level of ppGpp for their efficient induction. In contrast, the RpoS-dependent general stress response is not robustly induced until relatively high levels of ppGpp accumulate. Here we describe a data-driven conceptual model that explains how bacterial cells allocate transcriptional resources between metabolic and stress survival processes by discretely tuning regulatory activities to a central indicator of cellular physiology. The regulatory structure that emerges is consistent with a rheostatic model of the stringent response that allows cells to efficiently adapt to a wide range of nutritional environments. Keywords: genetic modification design; stress response; isoleucine starvation

ORGANISM(S): Escherichia coli Bacteroides thetaiotaomicron VPI-5482 Escherichia coli O157:H7 str. EDL933 Escherichia coli str. K-12 substr. MG1655 Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 Enterococcus faecalis V583 Escherichia coli O157:H7 str. Sakai Escherichia coli CFT073 Bacillus anthracis

PROVIDER: GSE11087 | GEO | 2008/04/08

SECONDARY ACCESSION(S): PRJNA107079

REPOSITORIES: GEO

Similar Datasets

2008-04-08 | E-GEOD-11087 | biostudies-arrayexpress
2019-11-19 | GSE136753 | GEO
2007-03-17 | GSE7265 | GEO
2007-03-17 | E-GEOD-7265 | biostudies-arrayexpress
2007-11-14 | GSE9382 | GEO
2023-12-20 | PXD042250 | Pride
2018-04-05 | GSE108758 | GEO
2014-05-01 | E-MTAB-2211 | biostudies-arrayexpress
2019-02-02 | GSE110170 | GEO
2021-03-31 | GSE150416 | GEO