Transcriptomics

Dataset Information

0

Expression data in TDEC obtained from irradiated GBM stem cell


ABSTRACT: Glioblastomas (GBM) are brain tumors which display a bad prognosis despite conventional treatment associating surgical resection and subsequent radio-chemotherapy. These tumors are defined by an abundant and abnormal vascularization as well as by an important cellular heterogeneity. GBM notably contain a subpopulation of GBM stem-like cells (GSC) which contribute to tumor aggressiveness, resistance, and recurrence. Moreover, GSC directly take part in the formation of new vessels via their transdifferentiation into tumor derived endothelial cells (TDEC). Considering the importance of the vascularization in the GBM, we postulate that radiation could enhance the transdifferentiation of GSC into TDEC. Here, we show that ionizing radiation potentiates endothelial features of TDEC obtained from 3 patient-derived primocultures of GSC. Indeed, TDEC obtained from irradiated GSC (TDEC IR+) migrate more towards VEGF, form more pseudotubes in Matrigel in vitro and develop more functional blood vessel in Matrigel plugs implanted in Nude mice than TDEC obtained from non-irradiated GSC. Transcriptomic analysis allows us to highlight an overexpression of Tie2 in TDEC IR+ which is associated with the activation of AKT signaling pathway. All radiation-induced effects on TDEC IR+ were abolished by using a Tie2 kinase inhibitor, confirming the role of Tie2 signaling pathway in this process. Finally, the number of Tie2+ vessels is increased in recurrent GBM compared with matched untreated tumors. In conclusion, we show that irradiation potentiates proangiogenic features of TDEC throught Tie2/AKT signaling pathway. New therapeutic stategies associating standard teatment and an inhibitor of Tie2 signaling pathway should be considered for forthcoming trials.

ORGANISM(S): Homo sapiens

PROVIDER: GSE138236 | GEO | 2019/10/02

REPOSITORIES: GEO

Similar Datasets

2019-12-20 | GSE138114 | GEO
2019-12-20 | GSE138113 | GEO
2019-12-20 | GSE137830 | GEO
2016-07-01 | E-GEOD-71116 | biostudies-arrayexpress
2022-05-11 | E-MTAB-10977 | biostudies-arrayexpress
2022-05-11 | E-MTAB-10978 | biostudies-arrayexpress
2020-04-21 | E-MTAB-9007 | biostudies-arrayexpress
2015-11-26 | E-GEOD-60705 | biostudies-arrayexpress
2022-07-13 | GSE199862 | GEO
2015-07-01 | E-GEOD-65576 | biostudies-arrayexpress