Genomics

Dataset Information

0

Cardiac Oxidative Signaling and Physiological Hypertrophy in the Na/K-ATPase a1s/sa2s/s Mouse Model of High Affinity for Cardiotonic Steroids


ABSTRACT: The Na/K-ATPase is the specific receptor for cardiotonic steroids (CTS) such as ouabain and digoxin. At pharmacological concentrations used in the treatment of cardiac conditions, CTS inhibit the ion-pumping function of Na/K-ATPase. At much lower concentrations, in the range of those reported for endogenous CTS in the blood, they stimulate hypertrophic growth of cultured cardiac myocytes through initiation of a Na/K-ATPase-mediated and reactive oxygen species (ROS)-dependent signaling. To examine a possible effect of endogenous concentrations of CTS on cardiac structure and function in vivo, we compared mice expressing the naturally resistant Na/K-ATPase α1 and age-matched mice genetically engineered to express a mutated Na/K-ATPase α1 with high affinity for CTS. In this model, total cardiac Na/K-ATPase activity, α1, α2 and β1 protein content remained unchanged, and the cardiac Na/K-ATPase dose-response curve to ouabain shifted to the left as expected. In males aged 3–6 months, increased α1 sensitivity to CTS resulted in a significant increase of cardiac carbonylated protein content, suggesting that ROS production was elevated. A moderate but significant increase of about 15% of the heart-weight-to-tibia-length ratio, accompanied by an increase of myocyte cross-sectional area was detected. Echocardiographic analyses did not reveal any change in cardiac function, and there was no fibrosis or re-expression of the fetal gene program. RNA sequencing analysis indicated that pathways related to energy metabolism were upregulated, while those related to extracellular matrix organization were downregulated. Consistent with a functional role of the latter, an angiotensin-II challenge that triggered fibrosis in the α1r/rα2s/s mouse failed to do so in the α1s/sα2s/s. Taken together, these results are indicative of a link between circulating CTS, Na/K-ATPase α1, ROS, and physiological cardiac hypertrophy in mice under baseline laboratory conditions.

ORGANISM(S): Mus musculus

PROVIDER: GSE169734 | GEO | 2021/03/27

REPOSITORIES: GEO

Similar Datasets

2022-05-20 | PXD028952 | Pride
2019-09-13 | PXD010006 | Pride
2018-02-14 | GSE102107 | GEO
2019-01-07 | PXD011319 | Pride
2022-08-12 | PXD032209 | Pride
2023-04-07 | GSE227301 | GEO
2010-05-05 | E-GEOD-20953 | biostudies-arrayexpress
2010-03-19 | GSE20953 | GEO
| PRJNA717765 | ENA
2022-04-01 | GSE149751 | GEO