Genomics

Dataset Information

0

Enhancers of host immune tolerance to bacterial infection discovered using linked computational and experimental approaches II


ABSTRACT: Current therapeutic strategies against bacterial infections focus on reduction of pathogen load using antibiotics; however, stimulation of host tolerance to infection in the presence of pathogens might offer an alternative approach. We used computational transcriptomics and Xenopus laevis embryos to discover infection response pathways, identify potential tolerance inducer drugs, and validate their ability to induce broad tolerance. Xenopus exhibits natural tolerance to Acinetobacter baumanii, Klebsiella pneumoniae, Staphylococcus aureus, and Streptococcus pneumoniae bacteria, whereas Aeromonas hydrophila and Pseudomonas aeruginosa produce lethal infections. Transcriptional profiling led to definition of a 20-gene signature that discriminates between tolerant and susceptible states, as well as identification of a more active tolerance response to gram negative compared to gram positive bacteria. Gene pathways associated with active tolerance in Xenopus, including some involved in metal ion binding and hypoxia, were found to be conserved across species, including mammals, and administration of a metal chelator (deferoxamine) or a HIF-1 agonist (1,4-DPCA) in embryos infected with lethal A. hydrophila increased survival despite high pathogen load. These data demonstrate the value of combining the Xenopus embryo infection model with computational multi-omics analyses for mechanistic discovery and drug repurposing to induce host tolerance to bacterial infections.

ORGANISM(S): Xenopus laevis

PROVIDER: GSE196424 | GEO | 2022/06/16

REPOSITORIES: GEO

Similar Datasets

2022-06-16 | GSE196422 | GEO
2007-03-16 | GSE6269 | GEO
2009-03-13 | E-GEOD-6269 | biostudies-arrayexpress
2023-09-07 | GSE225386 | GEO
2023-10-24 | PXD037233 | Pride
| 2413447 | ecrin-mdr-crc
2022-01-13 | PXD029702 | Pride
2010-05-19 | E-FPMI-7 | biostudies-arrayexpress
2019-06-13 | GSE132637 | GEO
2021-10-01 | GSE160372 | GEO