Project description:In this project we performed a comprehensive exploration of monocyte molecular responses in a cohort of patients with septic shock via label-free shotgun proteomics. We enrolled adult (≥18 years old) patients with sepsis from community-acquired infections, diagnosed according to the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) criteria. Blood samples were obtained within the first 72 hours from the diagnosis of sepsis (sepsis phase) and on de day before ICU discharge (recovery phase). The Control group consisted of age matched healthy volunteers. We excluded subjects with AIDS, advanced cancer, hematological diseases, and pregnancy.
Project description:BackgroundHistone deacetylase 2 (HDAC2) is a class I histone deacetylase family member that plays a critical role in suppressing inflammatory gene expression in the airways, lung parenchyma, and alveolar macrophages in patients with chronic obstructive pulmonary disease (COPD). However, the expression of HDAC2 in peripheral blood monocytes (PBMCs), nuclear factor kappa B (NF-κB) p65, and serum inflammatory cytokine levels in COPD patients, smokers, and non-smokers remains unclear.MethodsPBMCs were obtained from COPD patients, healthy smokers, and healthy nonsmokers. The HDAC2 and NF-κB p65 expression were quantified by Western Blot. HDAC activity was assessed by an HDAC fluorometric immunoprecipitation activity assay kit. Serum tumor necrosis factor-alpha (TNF-α) and interleukin-8 (IL-8) levels were measured by ELISA.ResultsHDAC2 expression and HDAC activity were decreased in PBMCs in COPD patients compared with smokers and non-smokers. Increased NF-κB p65 expression, serum TNF-α and IL-8 levels were observed in COPD patients compared with nonsmokers. The FEV1%pred was positively correlated with HDAC2 expression and HDAC activity in COPD patients. Smokers had decreased HDAC activity, increased NF-κB p65 expression and serum TNF-α compared with nonsmokers.ConclusionsHDAC2 expression was decreased in PBMCs of COPD patients and was correlated with disease severity. The reduction of HDAC2 expression not only directly enhances the expression of inflammatory genes, but may account for the activation of NF-κB mediated inflammation. Decreased HDAC2 may serve as a potential biomarker of COPD and predict the decline of lung function.
Project description:Blood monocytes serve as the first line of host defense and are equipped to recognize and respond to infection by triggering an immune-inflammatory response. While most information on these cells comes from in vitro studies in humans or in vivo studies in mice, little is known about monocytes under human disease conditions. We investigated the role of monocytes during sepsis and its resolution in humans. A transcriptomal and functional analysis of blood monocytes from patients during gram negative sepsis and at recovery was performed. Monocytes from sepsis patients showed upregulation of a large number of pro-inflammatory genes and cytokines/chemokines, consistent with an ongoing systemic inflammation. However, these cells showed impairment to ex vivo endotoxin (LPS) challenge, displaying a quantitative decrease in the number of LPS-inducible genes. Moreover, they downregulated the expression of several pro-inflammatory cytokine/chemokine genes, activation marker genes and transcription factors associated with monocyte/macrophage activation, upon ex vivo LPS stimulation. Functionally, they downregulated expression of inflammatory cytokines/chemokines and antigen presentation-related molecules and functions. In contrast, genes and functions related to phagocytosis, anti-microbial activity and tissue remodeling where remained unaffected or even enhanced . Collectively, our observations suggest a genetic and functional re-programming of these cells during human sepsis progression. Understanding the molecular mechanisms which regulate this re-programming will allow to devise strategies which could modulate the response of these cells and hence, disease progression.
Project description:Blood monocytes serve as the first line of host defense and are equipped to recognize and respond to infection by triggering an immune-inflammatory response. While most information on these cells comes from in vitro studies in humans or in vivo studies in mice, little is known about monocytes under human disease conditions. We investigated the role of monocytes during sepsis and its resolution in humans. A transcriptomal and functional analysis of blood monocytes from patients during gram negative sepsis and at recovery was performed. Monocytes from sepsis patients showed upregulation of a large number of pro-inflammatory genes and cytokines/chemokines, consistent with an ongoing systemic inflammation. However, these cells showed impairment to ex vivo endotoxin (LPS) challenge, displaying a quantitative decrease in the number of LPS-inducible genes. Moreover, they downregulated the expression of several pro-inflammatory cytokine/chemokine genes, activation marker genes and transcription factors associated with monocyte/macrophage activation, upon ex vivo LPS stimulation. Functionally, they downregulated expression of inflammatory cytokines/chemokines and antigen presentation-related molecules and functions. In contrast, genes and functions related to phagocytosis, anti-microbial activity and tissue remodeling where remained unaffected or even enhanced . Collectively, our observations suggest a genetic and functional re-programming of these cells during human sepsis progression. Understanding the molecular mechanisms which regulate this re-programming will allow to devise strategies which could modulate the response of these cells and hence, disease progression. Blood monocytes from gram-negative sepsis patients during sepsis (Sepsis) and following their recovery (Recovery/Basal) as well as healthy donor (control) were isolated. Thereafter, these cells were treated ex vivo with or without LPS for 3h and analysed for transcriptomic study.
Project description:BackgroundSepsis is a global burden and the primary cause of death in intensive care units worldwide. The pathophysiological changes induced by the host's systemic inflammatory response to infection are not yet fully understood. During sepsis, the immune system is confronted with a variety of factors, which are integrated within the individual cells and result in changes of their basal state of responsiveness. Epigenetic mechanisms like histone modifications are known to participate in the control of immune reactions, but so far the situation during sepsis is unknown.Methods and findingsIn a pilot approach, we performed combined chromatin immunoprecipitation followed by high-throughput sequencing to assess the genome-wide distribution of the chromatin modifications histone 3 lysine 4 and 27 trimethylation and lysine 9 acetylation in monocytes isolated from healthy donors (n = 4) and patients with sepsis (n = 2). Despite different underlying causes for sepsis, a comparison over promoter regions shows a high correlation between the patients for all chromatin marks. These findings hold true also when comparing patients to healthy controls. Despite the global similarity, differential analysis reveals a set of distinct promoters with significant enrichment or depletion of histone marks. Further analysis of overrepresented GO terms show an enrichment of genes involved in immune function. To the most prominent ones belong different members of the HLA family located within the MHC cluster together with the gene coding for the major regulator of this locus-CIITA.ConclusionsWe are able to show for the first time that sepsis in humans induces selective and precise changes of chromatin modifications in distinct promoter regions of immunologically relevant genes, shedding light on basal regulatory mechanisms that might be contributing to the functional changes occurring in monocytes.
Project description:Gain-of-function mutations in stimulator of interferon gene 1 (STING1) result in STING-associated vasculopathy with onset in infancy (SAVI), a severe autoinflammatory disease. Although elevated type I interferon (IFN) production is thought to be the leading cause of the symptoms observed in patients, STING can induce a set of pathways, which have roles in the onset and severity of SAVI and remain to be elucidated. To this end, we performed a multi-omics comparative analysis of peripheral blood mononuclear cells (PBMCs) and plasma from SAVI patients and healthy controls, combined with a dataset of healthy PBMCs treated with IFN-β. Our data reveal a subset of disease-associated monocyte, expressing elevated CCL3, CCL4, and IL-6, as well as a strong integrated stress response, which we suggest is the result of direct PERK activation by STING. Cell-to-cell communication inference indicates that these monocytes lead to T cell early activation, resulting in their senescence and apoptosis. Last, we propose a transcriptomic signature of STING activation, independent of type I IFN response.
Project description:To study the transcriptional profile of patients with acute RSV or Influenza infection,children of median age 2.4 months (range 1.5-8.6) hospitalized with acute RSV and influenza virus infection were offered study enrollment after microbiologic confirmation of the diagnosis. Blood samples were collected from them within 42-72 hours of hospitalization. We excluded children with suspected or proven polymicrobial infections, with underlying chronic medical conditions (i.e congenital heart disease, renal insufficiency), with immunodeficiency, or those who received systemic steroids or other immunomodulatory therapies. The RSV cohort consisted of 51 patients with median age of 2 months (range 1.5-3.9) and the influenza cohort had 28 patients with median age of 5.5 months (range 1.4-21). Control samples were obtained from healthy children undergoing elective surgical procedures or at outpatient clinic visits. To exclude viral co-infections we performed nasopharyngeal viral cultures of all subjects. We recruited 10 control patients for the RSV cohort with median age of 6.7 months (range 5-10), and 12 control patients for the influenza cohort with median age of18.5 months (range 10.5-26).
Project description:BackgroundSepsis is a critical condition associated with high morbidity and mortality, emphasizing the need for reliable biomarkers for its diagnosis and prognosis. This study uses advanced immunological techniques to evaluate monocytic CD39 (mCD39) expression as a potential marker in sepsis.MethodsThis prospective observational cohort study included 206 participants from the First Affiliated Hospital, Zhejiang University School of Medicine between April 2022 and September 2023. Participants were categorized into four groups: healthy donors, patients with mild infections, post-cardiac surgery patients (non-infectious inflammation), and sepsis patients. Peripheral Blood Mononuclear Cells were analyzed using mass cytometry time-of-flight (CyTOF) with a 42-marker immune panel and flow cytometry targeting monocytes. Statistical analyses included ROC curves for diagnostic and prognostic performance and Kaplan-Meier survival analysis for prognostic evaluation.ResultsSepsis patients exhibited significantly lower monocytic CD39 expression than mild infection and post-surgery groups (p < 0.05). The diagnostic performance analysis revealed that mCD39 effectively distinguished sepsis from mild infection (AUC = 0.877) and non-infectious inflammation (AUC = 0.935). Prognostic analysis identified low mCD39 expression as a strong predictor of short-term survival, with a 7-day survival AUC of 0.85 (p = 0.037). Kaplan-Meier analysis showed that sepsis patients with low mCD39 expression had significantly lower 28-day survival rates (56.7% vs. 80.6%, p = 0.016).ConclusionsLow CD39 expression on monocytes might serve as a potential diagnostic biomarker and a strong predictor of poor prognosis in sepsis patients.
Project description:Innate immune memory, also refered to as trained immunity (TRIM) is the phenomenon whereby innate immune cells such as monocytes or macrophages undergo functional reprogramming after exposure to microbial components. In this study we performed epigenomic and transcriptomic analysis of HIDS (Hyper IgD Syndrome) patients at baseline, and after 24 hours culture in media (RPMI only) or media + 10ng/mL LPS. HIDS is associated with the accumulation of mevalonate, a monocyte trainer.