Cyclic di-AMP drives secondary differentiation in Chlamydia trachomatis
Ontology highlight
ABSTRACT: The obligate intracellular bacterium Chlamydia alternates between two functional forms during its developmental cycle: elementary body (EB) and reticulate body (RB). However, the molecular mechanisms governing the transitions between these forms are unknown. Here, we present evidence cyclic di-AMP (c-di-AMP) is a key factor in triggering the transition from RB to EB (i.e., secondary differentiation) in the chlamydial developmental cycle. We made strains producing different levels of c-di-AMP, which we linked to changes in secondary differentiation status. Increases in c-di-AMP resulted in an earlier increase in transcription of EB-associated genes, and this was further manifested in earlier production of EBs. In contrast, when c-di-AMP levels were decreased, secondary differentiation was delayed. Based on these data, we conclude there is a threshold level of c-di-AMP needed to trigger secondary differentiation in Chlamydia. This is the first study to define a mechanism of secondary differentiation in Chlamydia.
ORGANISM(S): Homo sapiens
PROVIDER: GSE252732 | GEO | 2025/08/21
REPOSITORIES: GEO
ACCESS DATA