Robust classification of pediatric brain tumors from cell-free DNA methylomes
Ontology highlight
ABSTRACT: Cerebrospinal fluid (CSF) liquid biopsies serve as a rich source of tumor-derived cell-free DNA (cfDNA) for evaluating patients with central nervous system (CNS) tumors. However, challenges stemming from trace cfDNA yields and low mutational burden have hindered sensitivity, whereas first-generation clinical assays have relied on genetic alterations as biomarkers. Leveraging the diagnostic utility of DNA methylation classification in CNS tumors, we developed M-PACT (Methylation-based Predictive Algorithm for CNS Tumors), a robust deep neural network that accurately classifies tumors from sub-nanogram input cfDNA methylomes acquired through enzymatic methylation sequencing. In addition to tumor classification, this workflow enables methylation-based cellular deconvolution and sensitive copy number variation (CNV) detection. We benchmark our methodology in pediatric CNS embryonal tumors and further demonstrate accurate classification of intra-operative CSF, balanced tumor genomes, and secondary malignancies. Altogether, we provide a blueprint for CNS tumor classification from low input cfDNA methylomes, motivating prospective validation for future clinical implementation.
ORGANISM(S): Homo sapiens
PROVIDER: GSE292312 | GEO | 2025/11/17
REPOSITORIES: GEO
ACCESS DATA