Genomics

Dataset Information

0

Metabolomics reveals phospholipids as important nutrient sources during Salmonella growth in bile in vitro and in vivo


ABSTRACT: During the colonization of hosts, bacterial pathogens are presented with many challenges that must be overcome for colonization to successfully occur. This requires bacterial sensing of the surroundings and adaptation to the conditions encountered. One of the major impediments to pathogen colonization of the mammalian gastrointestinal tract is the antibacterial action of bile. Salmonella enterica serovar Typhimurium has specific mechanisms involved in resistance to bile. Besides being resistant to it, Salmonella can also successfully multiply in bile, using it as a source of nutrients. This accomplishment is highly relevant to pathogenesis, as Salmonella colonizes the gallbladder of hosts, where it can be carried asymptomatically and promote further host spread and transmission. In order to gain insights into the mechanisms used by Salmonella to grow in bile, we studied the changes elicited by Salmonella in the chemical composition of bile during growth in vitro and in vivo through a metabolomics approach. Our data suggest that phospholipids are an important source of carbon and energy for Salmonella during growth in the laboratory as well as during gallbladder infections of mice. Further studies in this area will generate a better understanding of how Salmonella exploits this generally hostile environment for its own benefit.

ORGANISM(S): Mus musculus

PROVIDER: GSE30404 | GEO | 2011/07/07

SECONDARY ACCESSION(S): PRJNA143667

REPOSITORIES: GEO

Similar Datasets

2011-07-06 | E-GEOD-30404 | biostudies-arrayexpress
2011-11-10 | GSE33604 | GEO
2011-11-10 | E-GEOD-33604 | biostudies-arrayexpress
2015-12-04 | GSE75662 | GEO
2015-12-04 | E-GEOD-75662 | biostudies-arrayexpress
2019-01-20 | E-MTAB-7569 | biostudies-arrayexpress
2017-05-30 | GSE74576 | GEO
2021-03-12 | E-MTAB-8495 | biostudies-arrayexpress
2019-09-05 | GSE136893 | GEO
2011-08-23 | GSE27604 | GEO