Genomics

Dataset Information

0

RP58 controls neuron and astrocyte differentiation by downregulating the expression of Id1-4 genes in the developing cortex


ABSTRACT: Appropriate number of neurons and glial cells is generated from neural stem cells (NSCs) by the regulation of cell cycle exit and subsequent differentiation. Although the regulatory mechanism remains obscure, Id (inhibitor of differentiation) proteins are known to contribute critically to NSC proliferation by controlling cell cycle. Here we report that a transcriptional factor, RP58, negatively regulates all 4 Id genes (Id1-Id4) in developing cerebral cortex. Consistently, Rp58 knockout (KO) mice demonstrated enhanced astrogenesis accompanied with an excess of NSCs. These phenotypes were mimicked by the overexpression of all Id genes in wild-type cortical progenitors. Furthermore, Rp58 KO phenotypes were rescued by the knockdown of all Id genes in mutant cortical progenitors but not by the knockdown of each single Id gene. Finally, we determined p57 as an effector gene of RP58-Id-mediated cell fate control. These findings establish RP58 as a novel key regulator that controls the self-renewal and differentiation of NSCs and restriction of astrogenesis by repressing all Id genes during corticogenesis.

ORGANISM(S): Mus musculus

PROVIDER: GSE34327 | GEO | 2014/12/08

SECONDARY ACCESSION(S): PRJNA151485

REPOSITORIES: GEO

Similar Datasets

2014-12-08 | E-GEOD-34327 | biostudies-arrayexpress
2009-07-31 | GSE16595 | GEO
2009-07-31 | E-GEOD-16595 | biostudies-arrayexpress
2022-07-16 | GSE207955 | GEO
2012-03-15 | GSE36488 | GEO
2012-03-15 | E-GEOD-36488 | biostudies-arrayexpress
2010-10-07 | GSE21924 | GEO
2010-10-07 | E-GEOD-21924 | biostudies-arrayexpress
2021-08-09 | PXD027798 | iProX
| EGAS00001006063 | EGA